A217014 Permutation of natural numbers arising from applying the walk of a square spiral (e.g. A214526) to the data of triangular horizontal-last spiral (defined in A214226).
1, 7, 22, 8, 2, 3, 4, 6, 20, 42, 21, 44, 75, 45, 23, 9, 11, 12, 13, 14, 15, 5, 19, 41, 71, 109, 72, 43, 74, 113, 160, 114, 76, 46, 24, 10, 28, 29, 30, 31, 32, 33, 34, 16, 18, 40, 70, 108, 154, 208, 155, 110, 73, 112, 159, 214
Offset: 1
Programs
-
Python
SIZE = 33 # must be 4k+1 grid = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid[posY*SIZE+posX]=1 n = 2 def walk(stepX, stepY, chkX, chkY): global posX, posY, n while 1: posX+=stepX posY+=stepY grid[posY*SIZE+posX]=n n+=1 if grid[(posY+chkY)*SIZE+posX+chkX]==0: return while 1: walk(1, 1, -1, 0) # down-right walk(-1, 0, 1, -1) # left walk(-1, 0, 1, -1) # left if posX<2: break walk(1, -1, 1, 1) # up-right import sys grid2 = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid2[posY*SIZE+posX]=1 def walk2(stepX, stepY, chkX, chkY): global posX, posY while 1: a = grid[posY*SIZE+posX] if a==0: sys.exit(1) print(a, end=', ') posX+=stepX posY+=stepY grid2[posY*SIZE+posX]=1 if grid2[(posY+chkY)*SIZE+posX+chkX]==0: return while 1: walk2(0, -1, 1, 0) # up walk2(1, 0, 0, 1) # right walk2(0, 1, -1, 0) # down walk2(-1, 0, 0, -1) # left
Comments