A214246 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,0,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 1, 1, 2, 2, 6, 2, 1, 1, 2, 2, 5, 11, 4, 1, 1, 2, 2, 3, 5, 17, 2, 1, 1, 2, 2, 3, 4, 10, 29, 4, 1, 1, 2, 2, 3, 2, 7, 10, 47, 3, 1, 1, 2, 2, 3, 2, 6, 8, 21, 78, 4, 1, 1, 2, 2, 3, 2, 4, 5, 9, 22, 130, 2
Offset: 0
Examples
A(3,0) = 2: [3], [1,1,1]. A(4,1) = 6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1]. A(5,2) = 5: [5], [3,1,1], [1,3,1], [1,1,3], [1,1,1,1,1]. A(6,3) = 7: [6], [4,1,1], [3,3], [2,2,2], [1,4,1], [1,1,4], [1,1,1,1,1,1]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, 2, ... 2, 4, 2, 2, 2, 2, 2, 2, ... 3, 6, 5, 3, 3, 3, 3, 3, ... 2, 11, 5, 4, 2, 2, 2, 2, ... 4, 17, 10, 7, 6, 4, 4, 4, ... 2, 29, 10, 8, 5, 4, 2, 2, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={-k, 0, k}))) end: A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)): seq(seq(A(n, d-n), n=0..d), d=0..15);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], {j, Union[{-k, 0, k}]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)