cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214263 Expansion of f(x^1, x^7) in powers of x where f() is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Michael Somos and Omar E. Pol, Jul 09 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Characteristic function of A074377: a(n) = 1 if and only if n is in A074377.

Examples

			G.f. = 1 + x + x^7 + x^10 + x^22 + x^27 + x^45 + x^52 + x^76 + x^85 + x^115 + ...
G.f. = q^9 + q^25 + q^121 + q^169 + q^361 + q^441 + q^729 + q^841 + q^1225 + ...
		

Crossrefs

A000122, A080995, A010054, A133100, A089801 have g.f. of f(x,x^k) for k=1..5.

Programs

  • Mathematica
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; Table[SeriesCoefficient[f[q, q^7], {q, 0, n}], {n, 0, 50}] (* G. C. Greubel, Oct 05 2017 *)
  • PARI
    {a(n) = issquare(16*n + 9)};

Formula

Euler transform of period 16 sequence [ 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 1, -1, ...].
G.f.: f(x, x^7) = sum_{k in Z} x^(4*k^2 - 3*k).
a(n) = A010054(2*n + 1) = A115359(2*n).
Sum_{k=1..n} a(k) ~ sqrt(n). - Amiram Eldar, Jan 13 2024