A214263 Expansion of f(x^1, x^7) in powers of x where f() is Ramanujan's general theta function.
1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0
Examples
G.f. = 1 + x + x^7 + x^10 + x^22 + x^27 + x^45 + x^52 + x^76 + x^85 + x^115 + ... G.f. = q^9 + q^25 + q^121 + q^169 + q^361 + q^441 + q^729 + q^841 + q^1225 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
- Index entries for characteristic functions.
Crossrefs
Programs
-
Mathematica
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; Table[SeriesCoefficient[f[q, q^7], {q, 0, n}], {n, 0, 50}] (* G. C. Greubel, Oct 05 2017 *)
-
PARI
{a(n) = issquare(16*n + 9)};
Formula
Euler transform of period 16 sequence [ 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 1, -1, ...].
G.f.: f(x, x^7) = sum_{k in Z} x^(4*k^2 - 3*k).
Sum_{k=1..n} a(k) ~ sqrt(n). - Amiram Eldar, Jan 13 2024
Comments