A214264 Expansion of f(x^3, x^5) in powers of x where f() is Ramanujan's two-variable theta function.
1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
1 + x^3 + x^5 + x^14 + x^18 + x^33 + x^39 + x^60 + x^68 + x^95 + x^105 + q + q^49 + q^81 + q^225 + q^289 + q^529 + q^625 + q^961 + q^1089 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A214264[n_] := SeriesCoefficient[f[x^3, x^5], {x, 0, n}]; Table[A214264[n], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
-
PARI
{a(n) = issquare( 16*n + 1)}
Formula
Euler transform of period 16 sequence [ 0, 0, 1, 0, 1, -1, 0, -1, 0, -1, 1, 0, 1, 0, 0, -1, ...].
G.f.: Sum_{k} x^(((8*k + 1)^2 - 1) / 16).
a(n) = A010054(2*n).
Sum_{k=1..n} a(k) ~ sqrt(n). - Amiram Eldar, Jan 13 2024
Comments