A214282 Largest Euler characteristic of a downset on an n-dimensional cube.
1, 1, 1, 3, 6, 10, 15, 35, 70, 126, 210, 462, 924, 1716, 3003, 6435, 12870, 24310, 43758, 92378, 184756, 352716, 646646, 1352078, 2704156, 5200300, 9657700, 20058300, 40116600, 77558760, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4537567650, 9075135300, 17672631900
Offset: 1
Keywords
Examples
G.f. = x + x^2 + x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 35*x^8 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Terry Tao, Optimal bounds for an alternating sum on a downset, 2012.
Crossrefs
Cf. A214283.
Programs
-
Haskell
a214282 n = a007318 (n - 1) (a004524 (n - 1)) -- Reinhard Zumkeller, Jul 14 2012
-
Mathematica
Table[{Binomial[n - 1, n/2], Binomial[n, n/2], Binomial[n + 1, n/2 + 1], Binomial[n + 2, n/2 + 2]}, {n, 0, 28, 4}] (* Alonso del Arte, Jul 09 2012 *)
-
PARI
a(n)=binomial(n-1,if(n%2,(n+1)\4*2,n/2)) \\ Charles R Greathouse IV, Jul 09 2012
-
PARI
{a(n) = if( n<1, 0, vecmax( Vec((1 - x)^(n-1))))}; /* Michael Somos, Apr 21 2014 */
-
Python
from math import comb def A214282(n): return comb(n-1, (n+1>>1)&(-1^(n&1))) # Chai Wah Wu, Jan 31 2024
Formula
a(n) = binomial(n - 1, n/2) when n is even, a(n) = binomial(n - 1, (n + 1)/2) when n is 3 mod 4, and a(n) = binomial(n - 1, (n - 1)/2) when n is 1 mod 4.
A214282(n) - A214283(n) is A056040(n) if n is even and A056040(n)/((n+1)/2) otherwise. - Peter Luschny, Jul 08 2016
Comments