cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214282 Largest Euler characteristic of a downset on an n-dimensional cube.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 15, 35, 70, 126, 210, 462, 924, 1716, 3003, 6435, 12870, 24310, 43758, 92378, 184756, 352716, 646646, 1352078, 2704156, 5200300, 9657700, 20058300, 40116600, 77558760, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4537567650, 9075135300, 17672631900
Offset: 1

Views

Author

Terence Tao, Jul 09 2012

Keywords

Comments

An m-downset is a set of subsets of 1..m such that if S is in the set, so are all subsets of S. The Euler characteristic of a downset is the number of sets in the downset with an even cardinality, minus the number with an odd cardinality.

Examples

			G.f. = x + x^2 + x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 35*x^8 + ...
		

Crossrefs

Cf. A214283.

Programs

  • Haskell
    a214282 n = a007318 (n - 1) (a004524 (n - 1))
    -- Reinhard Zumkeller, Jul 14 2012
    
  • Mathematica
    Table[{Binomial[n - 1, n/2], Binomial[n, n/2], Binomial[n + 1, n/2 + 1], Binomial[n + 2, n/2 + 2]}, {n, 0, 28, 4}] (* Alonso del Arte, Jul 09 2012 *)
  • PARI
    a(n)=binomial(n-1,if(n%2,(n+1)\4*2,n/2)) \\ Charles R Greathouse IV, Jul 09 2012
    
  • PARI
    {a(n) = if( n<1, 0, vecmax( Vec((1 - x)^(n-1))))}; /* Michael Somos, Apr 21 2014 */
    
  • Python
    from math import comb
    def A214282(n): return comb(n-1, (n+1>>1)&(-1^(n&1))) # Chai Wah Wu, Jan 31 2024

Formula

a(n) = binomial(n - 1, n/2) when n is even, a(n) = binomial(n - 1, (n + 1)/2) when n is 3 mod 4, and a(n) = binomial(n - 1, (n - 1)/2) when n is 1 mod 4.
a(2n) = A001700(n-1). a(4n+1) = A001448(n). a(4n+3) = A186231(n).
a(n) = A214283(n) + A001405(n). - Reinhard Zumkeller, Jul 14 2012
a(n) = A007318(n-1, A004524(n-1)). - Reinhard Zumkeller, Jul 14 2012
a(n+1) = A000108([n/2])*A215495(n). - M. F. Hasler, Aug 25 2012
A214282(n) - A214283(n) is A056040(n) if n is even and A056040(n)/((n+1)/2) otherwise. - Peter Luschny, Jul 08 2016