A214309 a(n) is the number of representative four-color bracelets (necklaces with turning over allowed) with n beads, for n >= 4.
3, 6, 26, 93, 424, 1180, 4844, 16165, 66953, 216804, 852822, 2949804, 12119134, 40886724, 160826008, 572457489, 2331396595, 8104270828, 32043699894, 115995102806, 471268872328, 1674576998468, 6641876380417, 24364816845446, 98894256728960, 357006263815751
Offset: 4
Keywords
Examples
a(4) = A213939(4,5) = 3 from the representative bracelets (with colors j for c[j], j=1, 2, ..., 4) 1234, 1342 and 1423, all taken cyclically. The necklace cyclic(1324), for example, becomes equivalent to cyclic(1423) under the dihedral D_4 turning over (or reflection) operation. a(6) = A213939(6, 8) = A213939(6, 9) = 10 + 16 = 26. See the comment above for the representative color multinomials for each case.
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..200
Programs
-
PARI
Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s} CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))} a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [4,4]); t/2} \\ Andrew Howroyd, Sep 26 2017
Formula
Extensions
Terms a(26) and beyond from Andrew Howroyd, Sep 26 2017
Comments