cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094247 Expansion of (phi(-q^5)^2 - phi(-q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 2, 0, 0, -1, 2, -1, 0, -1, 0, 0, 0, 0, 1, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, -1, 2, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, -1, 1, -2, 0, 0, 2, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 2, -1, 0, -1, 2, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Apr 24 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - q^4 + q^5 - q^8 + q^9 - q^10 + 2*q^13 - q^16 + 2*q^17 - q^18 - q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q^5]^2 - EllipticTheta[ 4, 0, q]^2)/4, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^5] QPochhammer[ q^20] QPochhammer[q, q^2], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^10 + A)^3 / (eta(x^2 + A) * eta(x^5 + A)),n))};
    
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, kronecker( -100, d)))}; /* Michael Somos, Aug 24 2006 */

Formula

Expansion of q * f(q^5) * f(-q^20) * chi(-q) in powers of q where f() and chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^10)^3 / (eta(q^2) * eta(q^5)) in powers of q.
Euler transform of period 10 sequence [-1, 0, -1, 0, 0, 0, -1, 0, -1, -2, ...].
a(n) is multiplicative with a(2^e) = -1 if e > 0. a(5^e) = 1, a(p^e) = e+1 if p == 1, 5 (mod 8), a(p^e) = (1 + (-1)^e) / 2 if p == 3, 7 (mod 8).
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A214316. - Michael Somos, Jul 12 2012
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(10*k))^3 / ((1 - x^(2*k)) * (1 - x^(5*k))).
G.f.: Sum_{k>0} Kronecker( -100, k) * x^k / (1 + x^k) = Sum_{k>0} Kronecker( -25, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)). - Michael Somos, Jul 12 2012
a(n+1) = (-1)^n * A053694(n). a(4*n + 1) = A122190(n).
a(4*n + 3) = 0. a(2*n) = - A053694(n). - Michael Somos, Jul 12 2012

A133573 Expansion of ( 5 * phi(-q^5)^2 - phi(-q)^2 ) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -1, 0, -1, -3, 0, 0, -1, 1, 3, 0, 0, 2, 0, 0, -1, 2, -1, 0, 3, 0, 0, 0, 0, -7, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, 3, 2, 0, 0, 0, -3, 0, 0, 0, 1, 7, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, -6, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, 3, 1, -2, 0, 0, -6, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 2, -1, 0, 7, 2, 0, 0, -2
Offset: 0

Views

Author

Michael Somos, Sep 17 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence. - Andrew Howroyd, Aug 06 2018

Examples

			G.f. = 1 + q - q^2 - q^4 - 3*q^5 - q^8 + q^9 + 3*q^10 + 2*q^13 - q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 4, 0, q^5]^2 - EllipticTheta[ 4, 0, q]^2)/4, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^2 QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, if( d%5==0, kronecker(-4, d/5) * 5) - kronecker(-4, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5+A) / (eta(x + A) * eta(x^10 + A)), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^5) / ( eta(q) * eta(q^10) ) in powers of q.
Euler transform of period 10 sequence [ 1, -2, 1, -2, 0, -2, 1, -2, 1, -2, ...].
Moebius transform is period 40 sequence [ 1, -2, -1, 0, -4, 2, -1, 0, 1, 8, -1, 0, 1, 2, 4, 0, 1, -2, -1, 0, 1, 2, -1, 0, -4, -2, -1, 0, 1, -8, -1, 0, 1, -2, 4, 0, 1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 20 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122190.
a(n) = (-1)^n * A133574(n). a(2*n) = A133574(n). a(4*n + 1) = A214316(n). a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = a(n). - Michael Somos, Jul 12 2012
Sum_{k=1..n} abs(a(k)) ~ (8*Pi/25) * n. - Amiram Eldar, Jan 27 2024
Showing 1-2 of 2 results.