cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214398 Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
Offset: 1

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

This is also the array A(n,k) read upwards antidiagonals, where the entry in row n and column k counts the vertex-labeled digraphs with n arcs and k vertices, allowing multi-edges and multi-loops (labeled analog to A138107). The binomial formula counts the weak compositions of distributing n arcs over the k^2 positions in the adjacency matrix. - R. J. Mathar, Aug 03 2017

Examples

			Triangle begins:
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1;
1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1;
1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
		

Crossrefs

Cf. A214400 (central terms), A178325 (row sums), A054688, A000290 (1st subdiagonal), A037270 (2nd subdiagonal).
Cf. A230049.

Programs

  • Maple
    A214398 := proc(n,k)
        binomial(k^2+n-k-1,n-k) ;
    end proc:
    seq(seq(A214398(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 03 2017
  • Mathematica
    nmax = 11;
    T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}];
    Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
  • PARI
    T(n,k)=binomial(k^2+n-k-1,n-k)
    for(n=1,11,for(k=1,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = binomial(k^2+n-k-1, n-k).
Row sums form A178325.
Central terms form A214400.
T(n,n-2) = A037270(n-2). - R. J. Mathar, Aug 03 2017
T(n,n-3) = (n^2-6*n+11)*(n^2-6*n+10)*(n-3)^2 /6. - R. J. Mathar, Aug 03 2017