A214398 Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.
1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 10, 9, 1; 1, 20, 45, 16, 1; 1, 35, 165, 136, 25, 1; 1, 56, 495, 816, 325, 36, 1; 1, 84, 1287, 3876, 2925, 666, 49, 1; 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1; 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1; 1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
Links
- Paul D. Hanna, Rows n = 0..45, flattened.
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 80.
Crossrefs
Programs
-
Maple
A214398 := proc(n,k) binomial(k^2+n-k-1,n-k) ; end proc: seq(seq(A214398(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 03 2017
-
Mathematica
nmax = 11; T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}]; Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
-
PARI
T(n,k)=binomial(k^2+n-k-1,n-k) for(n=1,11,for(k=1,n,print1(T(n,k),", "));print(""))
Formula
T(n,k) = binomial(k^2+n-k-1, n-k).
Row sums form A178325.
Central terms form A214400.
T(n,n-2) = A037270(n-2). - R. J. Mathar, Aug 03 2017
T(n,n-3) = (n^2-6*n+11)*(n^2-6*n+10)*(n-3)^2 /6. - R. J. Mathar, Aug 03 2017
Comments