cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214415 Numbers n such that prevprime(2^n) AND nextprime(2^n) = 1, where AND is the bitwise AND operator.

Original entry on oeis.org

2, 4, 6, 8, 12, 15, 16, 23, 25, 30, 37, 53, 55, 57, 67, 75, 76, 81, 82, 84, 95, 108, 129, 132, 135, 139, 143, 155, 160, 163, 180, 181, 188, 192, 203, 204, 210, 222, 244, 263, 273, 277, 280, 287, 289, 295, 297, 308, 315, 319, 325, 330, 341, 367, 370, 393, 394, 406
Offset: 0

Views

Author

Alex Ratushnyak, Aug 07 2012

Keywords

Comments

A007053(a(n)) are indices of 1's in A175330. That is, A175330(A007053(a(n)))=1.
Conjecture: the sequence is infinite.

Examples

			4 is in the sequence because (prevprime(2^4) AND nextprime(2^4)) = 13 AND 17 = 1.
		

Crossrefs

Programs

  • Java
    import java.math.BigInteger;
    public class A214415 {
      public static void main (String[] args) {
        BigInteger b1 = BigInteger.valueOf(1);
        BigInteger b2 = BigInteger.valueOf(2);
        for (int n=2; ; n++) {
          BigInteger pwr = b1.shiftLeft(n);
          BigInteger pm  = pwr.subtract(b1);
          BigInteger pp  = pwr.add(b1);
          while (true) {
            if (pm.isProbablePrime(2)) {
                if (pm.isProbablePrime(80)) break;
            }
            pm  = pm.subtract(b2);
          }
          while (true) {
            if (pp.isProbablePrime(2)) {
                if (pp.isProbablePrime(80)) break;
            }
            pp  = pp.add(b2);
          }
          if (pm.and(pp).equals(b1)) {
            System.out.printf("%d, ",n);
          }
        }
      }
    }
    
  • Mathematica
    ba1Q[n_]:=Module[{c=2^n},BitAnd[NextPrime[c],NextPrime[c,-1]]==1]; Select[ Range[ 450],ba1Q] (* Harvey P. Dale, Dec 25 2012 *)
  • PARI
    { for (n=2,1000,  N = 2^n;
        p1 = precprime(N-1);
        p2 = nextprime(N+1);
        ba = bitand(p1, p2);
        if ( bitand( ba, ba-1 ) == 0, print1(n,", "));
    ); }
    /* Joerg Arndt, Aug 16 2012 */
    
  • Python
    from itertools import islice
    from sympy import prevprime, nextprime
    def A214415_gen(): # generator of terms
        n, m = 2, 4
        while True:
            if prevprime(m)&nextprime(m) == 1:
                yield n
            n += 1
            m *= 2
    A214415_list = list(islice(A214415_gen(),20)) # Chai Wah Wu, Oct 16 2023