A328266 a(n) is the least k > 0 such that prime(n) AND prime(n+k) <= 1 (where prime(n) denotes the n-th prime number and AND denotes the bitwise AND operator).
2, 1, 2, 3, 2, 1, 5, 4, 4, 9, 14, 7, 6, 21, 29, 3, 27, 1, 14, 13, 11, 33, 10, 8, 7, 6, 6, 7, 3, 2, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 43, 42, 44, 48, 39, 41, 45, 36, 35, 34, 41, 40, 49, 30, 47, 31, 27, 26, 43
Offset: 1
Examples
For n = 18: - prime(18) = 61, - prime(19) = 67, - 61 AND 67 = 1, - so a(18) = 1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local L,M,R,j,v,i,x; L:= convert(ithprime(n),base,2); v:= 2^nops(L); M:= select(t -> L[t]=0, [$2..nops(L)]); for i from 1 do for j from 0 to 2^nops(M)-1 do R:= convert(j,base,2); x:= 1 + add(2^(M[i]-1), i=select(k -> R[k]=1, [$1..nops(R)]))+i*v; if isprime(x) then return numtheory:-pi(x)-n fi od od; end proc: map(f, [$1..100]); # Robert Israel, Oct 17 2019
-
Mathematica
A328266[n_]:=Module[{q=n,p=Prime[n]},While[BitAnd[p,Prime[++q]]>1];q-n];Array[A328266,100] (* Paolo Xausa, Oct 13 2023 *)
-
PARI
{ forprime (p=2, prime(73), k=0; forprime (q=p+1, oo, k++; if (bitand(p, q)<=1, print1 (k ", "); break))) }
Formula
a(n) = 1 iff A175330(n) = 1.
Comments