A214495 Smallest k>0 such that (3^n-k)*3^n-1 and (3^n-k)*3^n+1 are a twin prime pair.
1, 1, 11, 19, 7, 1, 23, 31, 53, 49, 47, 139, 49, 101, 97, 399, 87, 281, 37, 329, 893, 497, 203, 883, 213, 1171, 633, 593, 1747, 349, 3843, 479, 2347, 329, 1921, 1299, 2933, 1467, 3097, 1943, 1509, 2077, 2111, 723, 2913, 2307, 963, 361, 297, 1249, 1031, 2153
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..500
Crossrefs
Cf. A214496.
Programs
-
Maple
A214495 := proc(n) local k; for k from 1 do p := (3^n-k)*3^n-1 ; if isprime(p) and isprime(p+2) then return k; end if; end do: end proc: # R. J. Mathar, Jul 23 2012
-
Mathematica
sk[n_]:=Module[{k=1,n3=3^n},While[!PrimeQ[(n3-k)*n3-1]||!PrimeQ[(n3-k)* n3+1], k++];k]; Array[sk,60] (* Harvey P. Dale, Sep 05 2012 *)
Comments