cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214495 Smallest k>0 such that (3^n-k)*3^n-1 and (3^n-k)*3^n+1 are a twin prime pair.

Original entry on oeis.org

1, 1, 11, 19, 7, 1, 23, 31, 53, 49, 47, 139, 49, 101, 97, 399, 87, 281, 37, 329, 893, 497, 203, 883, 213, 1171, 633, 593, 1747, 349, 3843, 479, 2347, 329, 1921, 1299, 2933, 1467, 3097, 1943, 1509, 2077, 2111, 723, 2913, 2307, 963, 361, 297, 1249, 1031, 2153
Offset: 1

Views

Author

Pierre CAMI, Jul 19 2012

Keywords

Comments

Conjecture : there is always one such k(n) for each n>0.
Heuristically, as N increases, the average of a(n)/n^2 over n=1 to N tends to 1.2

Crossrefs

Cf. A214496.

Programs

  • Maple
    A214495 := proc(n)
        local k;
        for k from 1 do
            p := (3^n-k)*3^n-1 ;
            if isprime(p) and isprime(p+2) then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 23 2012
  • Mathematica
    sk[n_]:=Module[{k=1,n3=3^n},While[!PrimeQ[(n3-k)*n3-1]||!PrimeQ[(n3-k)* n3+1], k++];k]; Array[sk,60] (* Harvey P. Dale, Sep 05 2012 *)