A214497 Smallest k>=0 such that (3^n-k)*2^n-1 and (3^n-k)*2^n+1 are a twin prime pair.
0, 6, 3, 9, 9, 6, 3, 93, 3, 54, 18, 96, 213, 297, 1206, 258, 312, 201, 261, 1206, 1158, 396, 1062, 216, 708, 762, 816, 678, 3579, 762, 831, 2106, 4734, 576, 333, 633, 213, 2766, 363, 2454, 1464, 2007, 4551, 3183, 1497, 4899, 198, 66, 9984, 2847, 276, 3051
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..500
Programs
-
Maple
A214497 := proc(n) local k; for k from 0 do p := (3^n-k)*2^n-1 ; if isprime(p) and isprime(p+2) then return k; end if; end do: end proc: seq(A214497(n),n=1..80) ; # R. J. Mathar, Jul 23 2012
-
Mathematica
sk[n_]:=Module[{k=0,c},c=(3^n-k)2^n;While[!PrimeQ[c-1] || !PrimeQ[c+1],k++;c=(3^n-k)2^n];k]; Array[sk,60] (* Harvey P. Dale, Dec 09 2012 *)
Comments