A214498 Smallest k>=0 such that (3^n+k)*2^n-1 and (3^n+k)*2^n+1 are a twin prime pair.
0, 6, 3, 12, 78, 18, 18, 141, 18, 54, 78, 132, 138, 78, 57, 537, 237, 6, 972, 219, 81, 3369, 69, 501, 2328, 18, 738, 291, 393, 969, 324, 492, 102, 3291, 1788, 1401, 891, 954, 4017, 309, 702, 1656, 3999, 1014, 2346, 4008, 3, 5001, 2736, 558, 2262, 969, 762
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..500
Programs
-
Maple
A214498 := proc(n) local k; for k from 0 do p := (3^n+k)*2^n-1 ; if isprime(p) and isprime(p+2) then return k; end if; end do: end proc: # R. J. Mathar, Jul 23 2012
-
Mathematica
sk[n_]:=Module[{n3=3^n,n2=2^n,k=0},While[!And@@PrimeQ[(n3+k)n2+{1,-1}], k++];k]; Array[sk,60] (* Harvey P. Dale, Jul 23 2013 *)
Comments