A214511 Least number having n orderless representations as p^2 + q^2, where p and q are primes.
8, 338, 2210, 10370, 202130, 229970, 197210, 81770, 18423410, 16046810, 12625730, 21899930, 9549410, 370247930, 416392730, 579994610, 338609570, 2155919090, 601741010, 254885930, 10083683090, 4690939370, 29207671610, 30431277890, 22264417370, 23231920010
Offset: 1
Keywords
Examples
a(2) = 338 because 338 = 7^2 + 17^2 = 13^2 + 13^2 and 338 is the least number with this property.
Links
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a214511 = (+ 1) . fromJust . (`elemIndex` a045698_list) -- Reinhard Zumkeller, Jul 29 2012
-
Mathematica
nn = 10^6; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2, {i, Length[ps]}, {j, i, Length[ps]}]]; t = Select[t, # <= nn &]; t2 = Sort[Tally[t]]; u = Union[Transpose[t2][[2]]]; d = Complement[Range[u[[-1]]], u]; If[d == {}, nLim = u[[-1]], nLim = d[[1]]-1]; t3 = Table[Select[t2, #[[2]] == n &, 1][[1]], {n, nLim}]; Transpose[t3][[1]]
Extensions
a(21)-a(26) from Donovan Johnson, Jul 29 2012
Comments