cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214511 Least number having n orderless representations as p^2 + q^2, where p and q are primes.

Original entry on oeis.org

8, 338, 2210, 10370, 202130, 229970, 197210, 81770, 18423410, 16046810, 12625730, 21899930, 9549410, 370247930, 416392730, 579994610, 338609570, 2155919090, 601741010, 254885930, 10083683090, 4690939370, 29207671610, 30431277890, 22264417370, 23231920010
Offset: 1

Views

Author

T. D. Noe, Jul 26 2012

Keywords

Comments

A045698(a(n)) = n and A045698(m) < n for m < a(n). - Reinhard Zumkeller, Jul 29 2012
a(53) = 3374376505370. a(52) and terms following a(53) are greater than 4*10^13. - Giovanni Resta, Jul 02 2018

Examples

			a(2) = 338 because 338 = 7^2 + 17^2 = 13^2 + 13^2 and 338 is the least number with this property.
		

Crossrefs

Cf. A016032 (p and q integers).

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a214511 = (+ 1) . fromJust . (`elemIndex` a045698_list)
    -- Reinhard Zumkeller, Jul 29 2012
  • Mathematica
    nn = 10^6; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2, {i, Length[ps]}, {j, i, Length[ps]}]]; t = Select[t, # <= nn &]; t2 = Sort[Tally[t]]; u = Union[Transpose[t2][[2]]]; d = Complement[Range[u[[-1]]], u]; If[d == {}, nLim = u[[-1]], nLim = d[[1]]-1]; t3 = Table[Select[t2, #[[2]] == n &, 1][[1]], {n, nLim}]; Transpose[t3][[1]]

Extensions

a(21)-a(26) from Donovan Johnson, Jul 29 2012