A214555 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 5(n)//4//9(n+1)//4(n)//5.
495, 549945, 554999445, 555499994445, 555549999944445, 555554999999444445, 555555499999994444445, 555555549999999944444445, 555555554999999999444444445, 555555555499999999994444444445, 555555555549999999999944444444445
Offset: 0
Examples
549945 is a fixed point of the mapping for n=1.
Links
- Syed Iddi Hasan, Table of n, a(n) for n = 0..165
Programs
-
Mathematica
Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n+1,9],PadRight[{},n,4],{5}]],{n,0,15}] (* Harvey P. Dale, Nov 23 2022 *)
Formula
If d(n) denotes n repetitions of the digit d, then a(n) = 5(n)49(n+1)4(n)5, where n >= 0.
Comments