cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214555 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 5(n)//4//9(n+1)//4(n)//5.

Original entry on oeis.org

495, 549945, 554999445, 555499994445, 555549999944445, 555554999999444445, 555555499999994444445, 555555549999999944444445, 555555554999999999444444445, 555555555499999999994444444445, 555555555549999999999944444444445
Offset: 0

Views

Author

Syed Iddi Hasan, Jul 20 2012

Keywords

Comments

The symbols // denote concatenation of digits in the definition, and d(n) denotes n repetitions of d, n >= 0.
Conjecture: satisfies a linear recurrence having signature (1111, -112110, 1111000, -1000000). - Harvey P. Dale, Nov 23 2022

Examples

			549945 is a fixed point of the mapping for n=1.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n+1,9],PadRight[{},n,4],{5}]],{n,0,15}] (* Harvey P. Dale, Nov 23 2022 *)

Formula

If d(n) denotes n repetitions of the digit d, then a(n) = 5(n)49(n+1)4(n)5, where n >= 0.