cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214595 T(n,k) = number of n X n X n triangular 0..k arrays with every horizontal row having the same average value.

Original entry on oeis.org

2, 3, 2, 4, 5, 2, 5, 8, 23, 2, 6, 13, 62, 401, 2, 7, 18, 157, 1862, 20351, 2, 8, 25, 312, 10177, 187862, 2869211, 2, 9, 32, 601, 33352, 3330677, 63120962, 1127599139, 2, 10, 41, 986, 103651, 20608352, 5495329427, 71200442882, 1248252244661, 2, 11, 50, 1619
Offset: 1

Views

Author

R. H. Hardin, Jul 22 2012

Keywords

Examples

			Table starts
.2.....3......4.......5........6.........7.........8..........9.........10
.2.....5......8......13.......18........25........32.........41.........50
.2....23.....62.....157......312.......601.......986.......1619.......2426
.2...401...1862...10177....33352....103651....250042.....589763....1199614
.2.20351.187862.3330677.20608352.121537201.493575042.1877543213.5767190924
Some solutions for n = k = 4:
.....2........1........2........2........2........2........2........2
....3.1......0.2......2.2......3.1......2.2......1.3......4.0......4.0
...3.2.1....0.3.0....3.2.1....2.4.0....0.2.4....3.0.3....1.2.3....4.0.2
..2.2.3.1..2.1.0.1..1.2.4.1..4.2.2.0..1.4.3.0..4.0.2.2..3.2.3.0..4.0.4.0
		

Crossrefs

Row 2 is A000982(n+1). Other rows: A214596, A214597, A214598.

Programs

  • PARI
    /* helper function  mult() gives multiplicity of a composition */
    mult(p, L=1, m=(#p)!)={for(k=2,#p, p[k]!=p[k-1] && m\=(-L+L=k)!); m\(#p-L+1)!}
    A214595(n, k)={sum(a=1,k, prod(L=2,n, my(c=0); forpart(p=L*a, c+=mult(p), [0,k], L); c))+1} \\ M. F. Hasler, Aug 21 2025

Formula

Empirical for row n:
n=1: a(k)=2*a(k-1)-a(k-2)
n=2: a(k)=2*a(k-1)-2*a(k-3)+a(k-4)
n=3: (order 12 antisymmetric)
n=4: (order 32 symmetric)
n=5: (order 84 symmetric)
T(n, k) = Sum_{s=0..k} Product_{L=2..n} NC(s*L, L, k), where NC(s, n, k) is the number of compositions of sum s with n parts between 0 and k. - M. F. Hasler, Aug 21 2025

A386649 Product of first n central trinomial coefficients (A002426) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 21, 399, 20349, 2869209, 1127599137, 1248252244659, 3918263795984601, 35080215765450132753, 899912775031092255512709, 66403663756769266442027284401, 14140062564030204365431731967633341, 8713488333644640745496899895218790824407
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: a(n) = A214589(n) - 2 for n >= 1, where A214589(n) is the number of n X n X n triangular 0..2 arrays with every horizontal row having the same average value.

Examples

			The central trinomial coefficients A002426(n) = [x^n] (1 + x + x^2)^n for n >= 0 begin [1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, ...], where a(n) equals the product of the terms A002426(0) through A002426(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[3^k * Hypergeometric2F1[1/2, -k, 1, 4/3], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0,n, polcoef((1 + x + x^2)^k, k) )}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Product_{k=0..n} A002426(k) for n >= 0.
a(n) ~ c * 3^((n-1)*(n+3)/2) * exp(n/2) / (2^(n - 3/4) * Pi^(n/2 - 1/4) * n^(n/2 + 7/16)), where c = 1.123782729130753266489882099159237662230713685736... - Vaclav Kotesovec, Aug 09 2025
Showing 1-2 of 2 results.