cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214589 Number of nXnXn triangular 0..2 arrays with every horizontal row having the same average value.

Original entry on oeis.org

3, 5, 23, 401, 20351, 2869211, 1127599139, 1248252244661, 3918263795984603, 35080215765450132755, 899912775031092255512711, 66403663756769266442027284403, 14140062564030204365431731967633343
Offset: 1

Views

Author

R. H. Hardin, Jul 22 2012

Keywords

Comments

Column 2 of A214595.
a(n) appears to equal A386649(n) + 2 for n >= 1, where A386649(n) = product of first n central trinomial coefficients (A002426). - Paul D. Hanna, Aug 20 2025

Examples

			Some solutions for n=4
.....1........1........1........1........1........1........1........1
....1.1......2.0......0.2......0.2......0.2......2.0......0.2......1.1
...2.0.1....2.0.1....1.2.0....2.1.0....1.1.1....2.1.0....1.2.0....0.2.1
..0.2.1.1..1.0.1.2..0.2.2.0..1.2.0.1..2.1.1.0..0.1.1.2..0.2.1.1..0.0.2.2
		

Crossrefs

A386650 Product of first n quadrinomial coefficients (A005725) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 30, 930, 93930, 31560480, 35600221440, 136099646565120, 1776236487321381120, 79580723341459838319360, 12296654209275691297430868480, 6578267322410960919238807125534720, 12223446894741861497849104893155093176320, 79112201841847644246811045518121813092796661760
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

Conjecture: 2*a(n) = A214590(n) - 2 for n >= 1, where A214590(n) is the number of nXnXn triangular 0..3 arrays with every horizontal row having the same average value.

Examples

			The quadrinomial coefficients A005725(n) = [x^n] (1 + x + x^2 + x^3)^n for n >= 0 begin [1, 1, 3, 10, 31, 101, 336, 1128, 3823, ...], where a(n) equals the product of the terms A005725(0) through A005725(n).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[HypergeometricPFQ[{(1-k)/2, -k, -k/2}, {1/2, 1}, -1], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = prod(k=0, n, polcoef((1 + x + x^2 + x^3)^k, k) )}
    for(n=0, 15, print1(a(n), ", "))

Formula

a(n) = Product_{k=0..n} A005725(k) for n >= 0.
a(n) ~ c * exp(n/2) * (11 + 217/(6371 + 624*sqrt(78))^(1/3) + (6371 + 624*sqrt(78))^(1/3))^(-1 + n/2 + n^2/2) * ((39 + (4563 - 78*sqrt(78))^(1/3) + (4563 + 78*sqrt(78))^(1/3))/13)^(n/2) / (2^(-11/4 + 2*n + n^2) * 3^((-3 + 2*n + n^2)/2) * Pi^(n/2 + 1/4) * n^((4290 - 1421*78^(2/3)/(804726 - 73709*sqrt(78))^(1/3) - (78*(804726 - 73709*sqrt(78)))^(1/3) + 4056*n)/8112)), where c = 0.77060824350557924602665408964165291884080801923663... - Vaclav Kotesovec, Aug 09 2025
Showing 1-2 of 2 results.