A214606 a(n) = gcd(n, 2^n - 2).
1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 14, 29, 2, 31, 2, 3, 2, 1, 2, 37, 2, 3, 2, 41, 2, 43, 2, 15, 2, 47, 2, 7, 2, 3, 2, 53, 2, 1, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 14, 71, 2, 73, 2, 3, 2, 1, 2, 79
Offset: 1
Examples
a(3) = 3 because 2^3 - 2 = 6 and gcd(3, 6) = 3. a(4) = 2 because 2^4 - 2 = 14 and gcd(4, 14) = 2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Java
import java.math.BigInteger; public class A214606 { public static void main (String[] args) { BigInteger c1 = BigInteger.valueOf(1); BigInteger c2 = BigInteger.valueOf(2); for (int n=0; n<222; n++) { BigInteger bn=BigInteger.valueOf(n),pm2=c1.shiftLeft(n).subtract(c2); System.out.printf("%s, ", bn.gcd(pm2).toString()); } } }
-
Magma
[GCD(n, 2^n-2): n in [1..80]]; // Vincenzo Librandi, Jan 26 2016
-
Maple
seq(igcd(n, (2&^n - 2) mod n), n=1 .. 1000); # Robert Israel, Jan 26 2016
-
Mathematica
Table[GCD[n, 2^n - 2], {n, 1, 59}] (* Alonso del Arte, Jul 22 2012 *)
-
PARI
a(n)=gcd(n,lift(Mod(2,n)^n-2)) \\ Charles R Greathouse IV, May 29 2014
Comments