cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214606 a(n) = gcd(n, 2^n - 2).

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 14, 29, 2, 31, 2, 3, 2, 1, 2, 37, 2, 3, 2, 41, 2, 43, 2, 15, 2, 47, 2, 7, 2, 3, 2, 53, 2, 1, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 14, 71, 2, 73, 2, 3, 2, 1, 2, 79
Offset: 1

Views

Author

Alex Ratushnyak, Jul 22 2012

Keywords

Comments

Greatest common divisor of n and 2^n - 2.
a(n)=n iff n=1 or n is prime or n is Fermat pseudoprime to base 2 or even pseudoprime to base 2. - Corrected by Thomas Ordowski, Jan 25 2016
Indices of 1's: A121707 preceded by 1. - False, see A267999.
Numbers n such that a(n) does not equal A020639(n) (the least prime factor of n): A146077.

Examples

			a(3) = 3 because 2^3 - 2 = 6 and gcd(3, 6) = 3.
a(4) = 2 because 2^4 - 2 = 14 and gcd(4, 14) = 2.
		

Crossrefs

Programs

  • Java
    import java.math.BigInteger;
    public class A214606 {
      public static void main (String[] args) {
        BigInteger c1 = BigInteger.valueOf(1);
        BigInteger c2 = BigInteger.valueOf(2);
        for (int n=0; n<222; n++) {
          BigInteger bn=BigInteger.valueOf(n),pm2=c1.shiftLeft(n).subtract(c2);
          System.out.printf("%s, ", bn.gcd(pm2).toString());
        }
      }
    }
    
  • Magma
    [GCD(n, 2^n-2): n in [1..80]]; // Vincenzo Librandi, Jan 26 2016
  • Maple
    seq(igcd(n, (2&^n - 2) mod n), n=1 .. 1000); # Robert Israel, Jan 26 2016
  • Mathematica
    Table[GCD[n, 2^n - 2], {n, 1, 59}] (* Alonso del Arte, Jul 22 2012 *)
  • PARI
    a(n)=gcd(n,lift(Mod(2,n)^n-2)) \\ Charles R Greathouse IV, May 29 2014