A213943 Row sums of partition array A213939 and triangle A213940: number of representative bracelets with n beads and up to n colors.
1, 2, 3, 9, 28, 144, 832, 6012, 48447, 444198, 4469834, 49650464, 597810739, 7809600123, 109524985564, 1646900490716, 26373465572350, 448901183773766, 8083772124339442, 153686286512223573, 3074405841292532560, 64582422678961767945
Offset: 1
Keywords
Examples
The a(4)= 9 representative bracelets are (j for c[j]): 1111, 1112, 1122, 1212, 1123, 1213, 1234, 1324 and 1243, all taken cyclically.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
PARI
a(n)={ if(n==0, 1, my(p=serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))); my(c=sumdiv(n, d, eulerphi(n/d)*polcoeff(p, d))/n); my(r=if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(p, d)), polcoeff(p, n/2) + sum(d=0, n/2-1, binomial(n/2-1, d)*polcoeff(p, n/2-1-d)*(2^d + if(d%2, 0, binomial(d, d/2))))/2)); ( (c + r)/2 ) ) } \\ Andrew Howroyd, Dec 21 2017
Comments