cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A108047 Concatenation of the previous pair of numbers, with the first two terms both 1.

Original entry on oeis.org

1, 1, 11, 111, 11111, 11111111, 1111111111111, 111111111111111111111, 1111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 01 2005

Keywords

Comments

The Fibonacci numbers, A000045, represented in base 1 (see A000042).

Examples

			The third term is 11 which is the concatenation of the first two terms 1 and 1.
		

Crossrefs

Column b=1 of A214326.
Column k=1 of A214679.

Formula

a(n) = (10^A000045(n)-1)/9.
a(n) = A000042(A000045(n)).

Extensions

Edited by Jason Kimberley, Dec 15 2012

A085652 Fibonacci sequence in base 2 of the alternate number system.

Original entry on oeis.org

1, 1, 2, 11, 21, 112, 221, 1221, 11122, 22111, 122121, 1121112, 2212121, 12222121, 112211122, 222122211, 2111222221, 12111122112, 111112121221, 212112212221, 1212122111122, 11121211221111, 21222222221121, 122121211211112, 1121121211121121, 2212212111221121
Offset: 1

Views

Author

Bob Forslund (forslund(AT)tbaytel.net), Jul 11 2003

Keywords

References

  • R. R. Forslund, A Logical Alternative to the existing positional number system. Souhtwest Journal of Pure and Applied Mathematics. Dec. 1995. Vol. 1

Crossrefs

Programs

  • Maple
    a:= proc(n) local d, l, m;
          m:= combinat[fibonacci](n); l:= NULL;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jul 25 2012

Formula

a(n) = A007931(A000045(n)).

Extensions

More terms from David Wasserman, Feb 08 2005

A282234 a(n) = Fibonacci(n) represented in bijective base-3 numeration.

Original entry on oeis.org

1, 1, 2, 3, 12, 22, 111, 133, 321, 1231, 2322, 11323, 22122, 111222, 211121, 323113, 1311311, 3112131, 12131212, 22321113, 112222332, 212321222, 332321331, 1323113323, 3133213131, 12311111231, 23221332132, 113233221133, 221232331112, 1112313322322
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Crossrefs

Column k=3 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 3, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..35);

Formula

a(n) = A007932(A000045(n)).

A282235 a(n) = Fibonacci(n) represented in bijective base-4 numeration.

Original entry on oeis.org

1, 1, 2, 3, 11, 14, 31, 111, 142, 313, 1121, 1434, 3221, 11321, 21142, 33123, 114331, 214114, 341111, 1221231, 2222342, 3444233, 12333241, 22444134, 41443441, 131214241, 233324342, 431211243, 1331142311, 2422414214, 4414223131, 13443243411, 31124133142
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Crossrefs

Column k=4 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 4, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..35);

Formula

a(n) = A084544(A000045(n)).

A282236 a(n) = Fibonacci(n) represented in bijective base-5 numeration.

Original entry on oeis.org

1, 1, 2, 3, 5, 13, 23, 41, 114, 155, 324, 534, 1413, 2452, 4415, 12422, 22342, 35314, 113211, 153525, 322241, 531321, 1354112, 2435433, 4344545, 12335533, 22241133, 35132221, 112423354, 153111125, 315534534, 524151214, 1345241253, 2424442522, 4325234325
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Crossrefs

Column k=5 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 5, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..35);

Formula

a(n) = A084545(A000045(n)).

A282237 a(n) = Fibonacci(n) represented in bijective base-6 numeration.

Original entry on oeis.org

1, 1, 2, 3, 5, 12, 21, 33, 54, 131, 225, 356, 625, 1425, 2454, 4323, 11221, 15544, 31165, 51153, 122362, 213555, 336361, 554356, 1335161, 2333561, 4113162, 6451163, 14564365, 25455612, 44464421, 114364433, 163313254, 322122131, 525435425, 1251561556
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Crossrefs

Column k=6 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 6, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..40);

Formula

a(n) = A057436(A000045(n)).

A282238 a(n) = Fibonacci(n) represented in bijective base-7 numeration.

Original entry on oeis.org

1, 1, 2, 3, 5, 11, 16, 27, 46, 76, 155, 264, 452, 746, 1531, 2577, 4441, 7351, 15122, 25473, 43625, 72431, 146356, 252117, 431476, 713626, 1445435, 2462364, 4241132, 6733526, 14274661, 24341517, 41646511, 66321331, 141271142, 237622473, 412223645, 653146451
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Crossrefs

Column k=7 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 7, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..40);

Formula

a(n) = A214677(A000045(n)).

A282239 a(n) = Fibonacci(n) represented in bijective base-8 numeration.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 15, 25, 42, 67, 131, 218, 351, 571, 1142, 1733, 2875, 4828, 8125, 15155, 25282, 42457, 67761, 132438, 222421, 354861, 577482, 1154563, 1754265, 3128848, 4885335, 8236385, 15343742, 25582347, 43146311, 68748658, 134117171, 224867851, 361187242
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Crossrefs

Column k=8 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 8, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..40);

Formula

a(n) = A214678(A000045(n)).

A282240 a(n) = Fibonacci(n) represented in bijective base-9 numeration.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 23, 37, 61, 98, 169, 278, 458, 747, 1316, 2164, 3481, 5655, 9246, 15912, 26258, 43271, 69539, 123821, 194461, 328382, 533853, 863345, 1497298, 2471654, 3978963, 6561727, 11651791, 18323628, 29975529, 49399258, 81485788, 141896157
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Examples

			a(10) = 61_bij9 = 9*6+1 = 55 = Fibonacci(10).
		

Crossrefs

Column k=9 of A214679.

Programs

  • Maple
    a:= proc(n) local b, d, l, m; l:= NULL;
          b, m:= 9, combinat[fibonacci](n);
          while m>0 do  d:= irem(m, b, 'm');
            if d=0 then d:=b; m:=m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=0..40);

Formula

a(n) = A052382(A000045(n)).
Showing 1-9 of 9 results.