cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214773 Primes such that all pairwise sums are squarefree.

Original entry on oeis.org

2, 3, 11, 19, 59, 83, 127, 163, 199, 227, 271, 311, 383, 419, 443, 811, 911, 919, 1063, 1163, 1171, 1319, 1427, 1559, 2099, 2143, 2543, 2683, 2999, 3259, 4519, 5099, 5171, 5711, 5783, 6211, 6719, 8111, 8219, 9203, 11003, 12227, 12511, 12659, 13259, 13883
Offset: 1

Views

Author

Zak Seidov, Jul 28 2012

Keywords

Comments

a(n+1) is the smallest prime p > a(n) such that all sums a(i)+p, i-1..n are squarefree. All odd terms = 3 mod 4.
The sequence is apparently infinite.

Crossrefs

Programs

  • Mathematica
    sumsSqFree[t_, p_] := And @@ SquareFreeQ /@ (t + p); t = {2}; Do[p = NextPrime[t[[-1]]]; While[! sumsSqFree[t, p], p = NextPrime[p]]; AppendTo[t, p], {50}]; t (* T. D. Noe, Jul 30 2012 *)

A214802 a(n+1) is the smallest integer m > a(n) such that all of sums (a(i))^2 + m^2, i=1..n are squarefree.

Original entry on oeis.org

1, 2, 3, 5, 13, 17, 23, 37, 49, 53, 67, 83, 97, 101, 103, 113, 137, 149, 151, 163, 167, 173, 263, 317, 337, 347, 353, 383, 401, 433, 451, 487, 503, 551, 563, 601, 701, 751, 773, 947, 967, 977, 983, 1013, 1033, 1049, 1051, 1087, 1187, 1201, 1249, 1283, 1333
Offset: 1

Views

Author

Zak Seidov, Jul 28 2012

Keywords

Comments

All terms except for a(2)=2 are odd.

Crossrefs

Programs

  • Mathematica
    s={1}; m=1; Do[f=0; Do[If[!SquareFreeQ[s[[i]]^2+p^2], f=1; Break[]], {i,m}]; If[f<1, AppendTo[s, p]; m++], {p, 2, 10^3}]; s
  • PARI
    v=List([1]); for(m=2,1e3,for(j=1,#v,if(issquare(m^2+v[j]^2), next(2))); listput(v,m)); Vec(v) \\ Charles R Greathouse IV, Jul 30 2012
Showing 1-2 of 2 results.