cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214776 Number A(n,k) of standard Young tableaux of shape [n*k,n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 9, 5, 0, 1, 4, 20, 48, 14, 0, 1, 5, 35, 154, 275, 42, 0, 1, 6, 54, 350, 1260, 1638, 132, 0, 1, 7, 77, 663, 3705, 10659, 9996, 429, 0, 1, 8, 104, 1120, 8602, 40480, 92092, 62016, 1430, 0, 1, 9, 135, 1748, 17199, 115101, 451269, 807300, 389367, 4862, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2012

Keywords

Comments

A(n,k) is also the number of binary words with n*k 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The A(2,2) = 9 words are: 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100.

Examples

			Square array A(n,k) begins:
  1,   1,    1,     1,     1,      1,      1, ...
  0,   1,    2,     3,     4,      5,      6, ...
  0,   2,    9,    20,    35,     54,     77, ...
  0,   5,   48,   154,   350,    663,   1120, ...
  0,  14,  275,  1260,  3705,   8602,  17199, ...
  0,  42, 1638, 10659, 40480, 115101, 272272, ...
		

Crossrefs

Main diagonal gives: A215557.

Programs

  • Maple
    A:= (n, k)-> max(0, binomial((k+1)*n, n)*((k-1)*n+1)/(k*n+1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[n_, k_] := Max[0, Binomial[(k+1)*n, n]*((k-1)*n+1)/(k*n+1)]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 01 2013, after Maple *)

Formula

A(n,k) = max(0, C((k+1)*n,n)*((k-1)*n+1)/(k*n+1)).