A214776 Number A(n,k) of standard Young tableaux of shape [n*k,n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 9, 5, 0, 1, 4, 20, 48, 14, 0, 1, 5, 35, 154, 275, 42, 0, 1, 6, 54, 350, 1260, 1638, 132, 0, 1, 7, 77, 663, 3705, 10659, 9996, 429, 0, 1, 8, 104, 1120, 8602, 40480, 92092, 62016, 1430, 0, 1, 9, 135, 1748, 17199, 115101, 451269, 807300, 389367, 4862, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 2, 9, 20, 35, 54, 77, ... 0, 5, 48, 154, 350, 663, 1120, ... 0, 14, 275, 1260, 3705, 8602, 17199, ... 0, 42, 1638, 10659, 40480, 115101, 272272, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140
- Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
A:= (n, k)-> max(0, binomial((k+1)*n, n)*((k-1)*n+1)/(k*n+1)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
a[n_, k_] := Max[0, Binomial[(k+1)*n, n]*((k-1)*n+1)/(k*n+1)]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 01 2013, after Maple *)
Formula
A(n,k) = max(0, C((k+1)*n,n)*((k-1)*n+1)/(k*n+1)).
Comments