cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A174687 Central coefficients T(2n,n) of the Catalan triangle A033184.

Original entry on oeis.org

1, 2, 9, 48, 275, 1638, 9996, 62016, 389367, 2466750, 15737865, 100975680, 650872404, 4211628008, 27341497800, 177996090624, 1161588834303, 7596549816030, 49772989810635, 326658445806000, 2147042307851595, 14130873926790390, 93115841412899760
Offset: 0

Views

Author

Paul Barry, Mar 27 2010

Keywords

Comments

A033184 is the Riordan array (c(x), x*c(x)), c(x) the g.f. of A000108.
Number of standard Young tableaux of shape [2n, n]. Also the number of binary words with 2n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(2) = 9 words are: 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Alois P. Heinz, Aug 15 2012
Number of lattice paths from (0,0) to (2n,n) not above y=x. - Ran Pan, Apr 08 2015

Crossrefs

Column k=2 of A214776.

Programs

  • Magma
    [(n+1)*Binomial(3*n,n)/(2*n+1): n in [0..25]]; // Vincenzo Librandi, Apr 08 2015
    
  • Maple
    a:= n-> binomial(3*n,n)*(n+1)/(2*n+1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 15 2012
  • Mathematica
    Table[Binomial[3n,n](n+1)/(2n+1), {n, 0, 25}] (* Vincenzo Librandi, Apr 08 2015 *)
  • PARI
    a(n) = (n+1)*binomial(3*n,n)/(2*n+1); \\ Michel Marcus, Nov 12 2022
  • SageMath
    [(n+1)*binomial(3*n,n)/(2*n+1) for n in range(31)] # G. C. Greubel, Nov 09 2022
    

Formula

a(n) = (n+1)*C(3*n, n)/(2n+1) = (n+1)*[x^(n+1)]( Rev(x/c(x)) ) = (n+1)*A001764(n), c(x) the g.f. of A000108.
G.f.: A(x) = sin(arcsin((3^(3/2)*sqrt(x))/2)/3)/(sqrt(3)*sqrt(x)) + cos(arcsin((3^(3/2)* sqrt(x))/2)/3)/(2*sqrt(1-(27*x)/4)). - Vladimir Kruchinin, May 25 2012
2*n*(2*n+1)*a(n) = 3*(13*n^2 -10*n +1)*a(n-1) -9*(3*n-4)*(3*n-5)*a(n-2). - R. J. Mathar, Nov 24 2012
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(n+1). - Ilya Gutkovskiy, Nov 01 2017
a(n) ~ 3^(3*n+1/2) / (4^(n+1) * sqrt(Pi*n)). - Amiram Eldar, Aug 29 2025

A126596 a(n) = binomial(4*n,n)*(2*n+1)/(3*n+1).

Original entry on oeis.org

1, 3, 20, 154, 1260, 10659, 92092, 807300, 7152444, 63882940, 574221648, 5188082354, 47073334100, 428634152730, 3914819231400, 35848190542920, 329007937216860, 3025582795190340, 27872496751392496, 257172019222240200, 2376196095585231920, 21983235825545286435
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2007

Keywords

Comments

Number of standard Young tableaux of shape [3n,n]. Also the number of binary words with 3n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 3 words are: 1011, 1101, 1110. - Alois P. Heinz, Aug 15 2012

Crossrefs

Column k=3 of A214776.

Programs

  • Haskell
    a126596 n = a005810 n * a005408 n `div` a016777 n
    -- Reinhard Zumkeller, Mar 04 2012
  • Magma
    [Binomial(4*n,n)*(2*n+1)/(3*n+1): n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
    
  • Maple
    seq((2*n+1)*binomial(4*n,n)/(3*n+1),n=0..22); # Emeric Deutsch, Mar 27 2007
  • Mathematica
    Table[(Binomial[4n,n](2n+1))/(3n+1),{n,0,30}] (* Harvey P. Dale, Feb 06 2016 *)

Formula

a(n) = A039599(2*n,n).
a(n) = (2*n+1)*A002293(n). - Mark van Hoeij, Nov 17 2011
a(n) = A208983(2*n+1). - Reinhard Zumkeller, Mar 04 2012
a(n) = A005810(n) * A005408(n) / A016777(n). - Reinhard Zumkeller, Mar 04 2012
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(2*n+1). - Ilya Gutkovskiy, Nov 01 2017
Recurrence: 3*n*(3*n-1)*(3*n+1)*a(n) = 8*(2*n+1)*(4*n-3)*(4*n-1)*a(n-1). - Vaclav Kotesovec, Feb 03 2018
a(n) ~ 2^(8*n+3/2) / (3^(3*n+3/2) * sqrt(Pi*n)). - Amiram Eldar, Aug 29 2025

Extensions

More terms from Emeric Deutsch, Mar 27 2007

A215541 a(n) = binomial(5*n,n)*(3*n+1)/(4*n+1).

Original entry on oeis.org

1, 4, 35, 350, 3705, 40480, 451269, 5101360, 58261125, 670609940, 7766844470, 90404916420, 1056658719675, 12393263030400, 145787921878840, 1719353829326880, 20322351313767965, 240674861588534100, 2855214354095519625, 33924757188414045330, 403641797464597415570
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2012

Keywords

Comments

Number of standard Young tableaux of shape [4n,n]. Also the number of binary words with 4n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 4 words are: 10111, 11011, 11101, 11110.

Crossrefs

Column k=4 of A214776.

Programs

  • Maple
    a:= n-> binomial(5*n,n)*(3*n+1)/(4*n+1):
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := Binomial[5*n,n]*(3*n+1)/(4*n+1); Array[a, 21, 0] (* Amiram Eldar, Aug 29 2025 *)

Formula

a(n) = C(5*n,n)*(3*n+1)/(4*n+1).
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(3*n+1). - Ilya Gutkovskiy, Nov 01 2017
Recurrence: 8*n*(2*n - 1)*(3*n - 2)*(4*n - 1)*(4*n + 1)*a(n) = 5*(3*n + 1)*(5*n - 4)*(5*n - 3)*(5*n - 2)*(5*n - 1)*a(n-1). - Vaclav Kotesovec, Feb 03 2018
a(n) ~ 3 * 5^(5*n+1/2) / (2^(8*n+7/2) * sqrt(Pi*n)). - Amiram Eldar, Aug 29 2025

A215542 a(n) = binomial(6*n,n)*(4*n+1)/(5*n+1).

Original entry on oeis.org

1, 5, 54, 663, 8602, 115101, 1570800, 21732542, 303719922, 4277470470, 60610884906, 863102246760, 12340998865104, 177064708142315, 2547927647834040, 36757054103054076, 531436857842656610, 7698470087956704210, 111712846834848074340, 1623556455926349703605
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2012

Keywords

Comments

Number of standard Young tableaux of shape [5n,n].

Crossrefs

Column k=5 of A214776.

Programs

  • Maple
    a:= n-> binomial(6*n,n)*(4*n+1)/(5*n+1):
    seq(a(n), n=0..20);
  • Mathematica
    Table[Binomial[6n,n] (4n+1)/(5n+1),{n,0,30}] (* Harvey P. Dale, Mar 06 2014 *)

Formula

a(n) = C(6*n,n)*(4*n+1)/(5*n+1).
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(4*n+1). - Ilya Gutkovskiy, Nov 01 2017
Recurrence: 5*n*(4*n - 3)*(5*n - 3)*(5*n - 2)*(5*n - 1)*(5*n + 1)*a(n) = 72*(2*n - 1)*(3*n - 2)*(3*n - 1)*(4*n + 1)*(6*n - 5)*(6*n - 1)*a(n-1). - Vaclav Kotesovec, Feb 03 2018
a(n) ~ 3^(6*n+1/2) * 4^(3*n+1) / (5^(5*n+3/2) * sqrt(Pi*n)). - Amiram Eldar, Aug 29 2025

A215543 Number of standard Young tableaux of shape [3n,3].

Original entry on oeis.org

0, 5, 48, 154, 350, 663, 1120, 1748, 2574, 3625, 4928, 6510, 8398, 10619, 13200, 16168, 19550, 23373, 27664, 32450, 37758, 43615, 50048, 57084, 64750, 73073, 82080, 91798, 102254, 113475, 125488, 138320, 151998, 166549, 182000, 198378, 215710, 234023, 253344
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2012

Keywords

Comments

Also the number of binary words with 3n 1's and 3 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 5 words are: 101010, 101100, 110010, 110100, 111000.

Crossrefs

Row n=3 of A214776.

Programs

  • Maple
    a:= n-> max(0, (3*n-2)*(3*n+2)*(n+1)/2):
    seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,48,154,350},50] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,4,-6,4]^n*[0;5;48;154])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

G.f.: (2*x^3-8*x^2+28*x+5)*x/(x-1)^4.
a(n) = (3*n-2)*(3*n+2)*(n+1)/2 for n>0, a(0) = 0.
From Amiram Eldar, Aug 29 2025: (Start)
Sum_{n>=1} 1/a(n) = 7/20 + sqrt(3)*Pi/10 - 3*log(3)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/5 - 4*log(2)/5 - 7/20. (End)

A215544 Number of standard Young tableaux of shape [4n,4].

Original entry on oeis.org

0, 14, 275, 1260, 3705, 8602, 17199, 31000, 51765, 81510, 122507, 177284, 248625, 339570, 453415, 593712, 764269, 969150, 1212675, 1499420, 1834217, 2222154, 2668575, 3179080, 3759525, 4416022, 5154939, 5982900, 6906785, 7933730, 9071127, 10326624, 11708125
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2012

Keywords

Comments

Also the number of binary words with 4n 1's and 4 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 14 words are: 10101010, 10101100, 10110010, 10110100, 10111000, 11001010, 11001100, 11010010, 11010100, 11011000, 11100010, 11100100, 11101000, 11110000.

Crossrefs

Row n=4 of A214776.

Programs

  • Maple
    a:= n-> max(0, (4*n+3)*(2*n+1)*(4*n-3)*(n+1)/3):
    seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,14,275,1260,3705,8602},40] (* Harvey P. Dale, Jan 25 2024 *)
  • PARI
    a(n)=max((4*n-3)*(4*n+3)*(2*n+1)*(n+1)/3,0) \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: (3*x^4-15*x^3-25*x^2-205*x-14)*x/(x-1)^5.
a(n) = (4*n-3)*(4*n+3)*(2*n+1)*(n+1)/3 for n>0, a(0) = 0.
Sum_{n>=1} 1/a(n) = 31/105 - 17*Pi/35 + 66*log(2)/35. - Amiram Eldar, Aug 29 2025

A215545 Number of standard Young tableaux of shape [5n,5].

Original entry on oeis.org

0, 42, 1638, 10659, 40480, 115101, 272272, 566618, 1072764, 1888460, 3137706, 4973877, 7582848, 11186119, 16043940, 22458436, 30776732, 41394078, 54756974, 71366295, 91780416, 116618337, 146562808, 182363454, 224839900, 274884896, 333467442, 401635913
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2012

Keywords

Comments

Also the number of binary words with 5n 1's and 5 0's such that for every prefix the number of 1's is >= the number of 0's.

Crossrefs

Row n=5 of A214776.

Programs

  • Maple
    a:= n-> max(0, (5*n-4)*(5*n+2)*(5*n+3)*(5*n+4)*(n+1)/24):
    seq(a(n), n=0..40);

Formula

G.f.: (4*x^5-24*x^4+256*x^3+1461*x^2+1386*x+42)*x/(x-1)^6.
a(n) = (5*n-4)*(5*n+2)*(5*n+3)*(5*n+4)*(n+1)/24 for n>0, a(0) = 0.

A215546 Number of standard Young tableaux of shape [6n,6].

Original entry on oeis.org

0, 132, 9996, 92092, 451269, 1570800, 4395118, 10559208, 22664655, 44602348, 81921840, 142247364, 235740505, 375609528, 578665362, 865924240, 1263256995, 1802085012, 2520122836, 3462167436, 4680934125, 6237939136, 8204428854, 10662355704, 13705400695
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2012

Keywords

Comments

Also the number of binary words with 6n 1's and 6 0's such that for every prefix the number of 1's is >= the number of 0's.

Crossrefs

Row n=6 of A214776.

Programs

  • Maple
    a:= n-> max(0, (6*n-5)*(6*n+5)*(3*n+2)*(2*n+1)*(3*n+1)*(n+1)/10):
    seq(a(n), n=0..40);

Formula

G.f.: (5*x^6-35*x^5-609*x^4-11921*x^3-24892*x^2-9072*x-132)*x/(x-1)^7.
a(n) = (6*n-5)*(6*n+5)*(3*n+2)*(2*n+1)*(3*n+1)*(n+1)/10 for n>0, a(0) = 0.
Sum_{n>=1} 1/a(n) = 76/385 - 1559*Pi/(924*sqrt(3)) + 2080*log(2)/231 - 135*log(3)/44. - Amiram Eldar, Aug 29 2025

A215547 Number of standard Young tableaux of shape [7n,7].

Original entry on oeis.org

0, 429, 62016, 807300, 5101360, 21732542, 71916768, 199448964, 485325150, 1067658735, 2167714560, 4122884232, 7427426292, 12781794760, 21151379600, 33835482648, 52547352546, 79506102225, 117541332480, 170211285180, 241935349656, 338141745810, 465431207488
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2012

Keywords

Comments

Also the number of binary words with 7n 1's and 7 0's such that for every prefix the number of 1's is >= the number of 0's.

Crossrefs

Row n=7 of A214776.

Programs

  • Maple
    a:= n-> max(0, binomial(7*n+7,7)*(7*n-6)/(7*n+1)):
    seq(a(n), n=0..30);
  • Mathematica
    Join[{0},Table[Binomial[7n+7,7] (7n-6)/(7n+1),{n,30}]] (* Harvey P. Dale, Jul 24 2016 *)

Formula

G.f.: (6*x^7 -48*x^6 +2808*x^5 +83196*x^4 +355384*x^3 +323184*x^2 +58584*x +429)*x / (x-1)^8.
a(n) = C(7*n+7,7)*(7*n-6)/(7*n+1) for n>0, a(0) = 0.

A215548 Number of standard Young tableaux of shape [8n,8].

Original entry on oeis.org

0, 1430, 389367, 7152444, 58261125, 303719922, 1188576675, 3804949176, 10495906641, 25810820750, 57928578191, 120681823860, 236332181085, 439263172458, 780774342075, 1335176857200, 2207407644585, 3542395893894, 5536432537895, 8450810096300, 12628017047349
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2012

Keywords

Comments

Also the number of binary words with 8n 1's and 8 0's such that for every prefix the number of 1's is >= the number of 0's.

Crossrefs

Row n=8 of A214776.

Programs

  • Maple
    a:= n-> max(0, binomial(8*n+8,8)*(8*n-7)/(8*n+1)):
    seq(a(n), n=0..30);
  • Mathematica
    Join[{0},Table[(Binomial[8n+8,8](8n-7))/(8n+1),{n,20}]] (* Harvey P. Dale, Mar 17 2020 *)

Formula

G.f.: (7*x^8 -63*x^7 -9615*x^6 -572643*x^5 -4331133*x^4 -7786221*x^3 -3699621*x^2 -376497*x -1430)*x / (x-1)^9.
a(n) = C(8*n+8,8)*(8*n-7)/(8*n+1) for n>0, a(0) = 0.
Showing 1-10 of 18 results. Next