cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001764 a(n) = binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees).

Original entry on oeis.org

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, 8414640, 50067108, 300830572, 1822766520, 11124755664, 68328754959, 422030545335, 2619631042665, 16332922290300, 102240109897695, 642312451217745, 4048514844039120, 25594403741131680, 162250238001816900
Offset: 0

Views

Author

Keywords

Comments

Smallest number of straight line crossing-free spanning trees on n points in the plane.
Number of dissections of some convex polygon by nonintersecting diagonals into polygons with an odd number of sides and having a total number of 2n+1 edges (sides and diagonals). - Emeric Deutsch, Mar 06 2002
Number of lattice paths of n East steps and 2n North steps from (0,0) to (n,2n) and lying weakly below the line y=2x. - David Callan, Mar 14 2004
With interpolated zeros, this has g.f. 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/(3*x) and a(n) = C(n+floor(n/2),floor(n/2))*C(floor(n/2),n-floor(n/2))/(n+1). This is the first column of the inverse of the Riordan array (1-x^2,x(1-x^2)) (essentially reversion of y-y^3). - Paul Barry, Feb 02 2005
Number of 12312-avoiding matchings on [2n].
Number of complete ternary trees with n internal nodes, or 3n edges.
Number of rooted plane trees with 2n edges, where every vertex has even outdegree ("even trees").
a(n) is the number of noncrossing partitions of [2n] with all blocks of even size. E.g.: a(2)=3 counts 12-34, 14-23, 1234. - David Callan, Mar 30 2007
Pfaff-Fuss-Catalan sequence C^{m}_n for m=3, see the Graham et al. reference, p. 347. eq. 7.66.
Also 3-Raney sequence, see the Graham et al. reference, p. 346-7.
The number of lattice paths from (0,0) to (2n,0) using an Up-step=(1,1) and a Down-step=(0,-2) and staying above the x-axis. E.g., a(2) = 3; UUUUDD, UUUDUD, UUDUUD. - Charles Moore (chamoore(AT)howard.edu), Jan 09 2008
a(n) is (conjecturally) the number of permutations of [n+1] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and end with an ascent. For example, a(4)=55 counts all 60 permutations of [5] that end with an ascent except 42315, 52314, 52413, 53412, all of which contain a 4-2-3-1 pattern and 42513. - David Callan, Jul 22 2008
Central terms of pendular triangle A167763. - Philippe Deléham, Nov 12 2009
With B(x,t)=x+t*x^3, the comp. inverse in x about 0 is A(x,t) = Sum_{j>=0} a(j) (-t)^j x^(2j+1). Let U(x,t)=(x-A(x,t))/t. Then DU(x,t)/Dt=dU/dt+U*dU/dx=0 and U(x,0)=x^3, i.e., U is a solution of the inviscid Burgers's, or Hopf, equation. Also U(x,t)=U(x-t*U(x,t),0) and dB(x,t)/dt = U(B(x,t),t) = x^3 = U(x,0). The characteristics for the Hopf equation are x(t) = x(0) + t*U(x(t),t) = x(0) + t*U(x(0),0) = x(0) + t*x(0)^3 = B(x(0),t). These results apply to all the Fuss-Catalan sequences with 3 replaced by n>0 and 2 by n-1 (e.g., A000108 with n=2 and A002293 with n=4), see also A086810, which can be generalized to A133437, for associahedra. - Tom Copeland, Feb 15 2014
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Kreweras lattice (noncrossing partitions ordered by refinement) of size n, see the Bernardi & Bonichon (2009) and Kreweras (1972) references. - Noam Zeilberger, Jun 01 2016
Number of sum-indecomposable (4231,42513)-avoiding permutations. Conjecturally, number of sum-indecomposable (2431,45231)-avoiding permutations. - Alexander Burstein, Oct 19 2017
a(n) is the number of topologically distinct endstates for the game Planted Brussels Sprouts on n vertices, see Ji and Propp link. - Caleb Ji, May 14 2018
Number of complete quadrillages of 2n+2-gons. See Baryshnikov p. 12. See also Nov 10 2014 comments in A134264. - Tom Copeland, Jun 04 2018
a(n) is the number of 2-regular words on the alphabet [n] that avoid the patterns 231 and 221. Equivalently, this is the number of 2-regular tortoise-sortable words on the alphabet [n] (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n steps of each type, with the condition that (1, 0) and (1, 1) steps alternate (starting with (1, 0)). - Helmut Prodinger, Apr 08 2019
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 312 and 1342. - Colin Defant, Jun 08 2019
The compositional inverse o.g.f. pair in Copeland's comment above are related to a pair of quantum fields in Balduf's thesis by Theorem 4.2 on p. 92. - Tom Copeland, Dec 13 2019
The sequences of Fuss-Catalan numbers, of which this is the first after the Catalan numbers A000108 (the next is A002293), appear in articles on random matrices and quantum physics. See Banica et al., Collins et al., and Mlotkowski et al. Interpretations of these sequences in terms of the cardinality of specific sets of noncrossing partitions are provided by A134264. - Tom Copeland, Dec 21 2019
Call C(p, [alpha], g) the number of partitions of a cyclically ordered set with p elements, of cyclic type [alpha], and of genus g (the genus g Faa di Bruno coefficients of type [alpha]). This sequence counts the genus 0 partitions (non-crossing, or planar, partitions) of p = 3n into n parts of length 3: a(n) = C(3n, [3^n], 0). For genus 1 see A371250, for genus 2 see A371251. - Robert Coquereaux, Mar 16 2024
a(n) is the total number of down steps before the first up step in all 2_1-Dyck paths of length 3*n for n > 0. A 2_1-Dyck path is a lattice path with steps (1,2), (1,-1) that starts and ends at y = 0 and does not go below the line y = -1. - Sarah Selkirk, May 10 2020
a(n) is the number of pairs (A<=B) of noncrossing partitions of [n]. - Francesca Aicardi, May 28 2022
a(n) is the number of parking functions of size n avoiding the patterns 231 and 321. - Lara Pudwell, Apr 10 2023
Number of rooted polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 3 of the family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 05 2024
The number of Apollonian networks (planar 3-trees) with n+3 vertices with a given base triangle. - Allan Bickle, Feb 20 2024
Number of rooted polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. A rooted polyomino has one external face identified, and chiral pairs are counted as two. a(n) = T(n) in the second Beineke and Pippert link. - Robert A. Russell, Mar 20 2024

Examples

			a(2) = 3 because the only dissections with 5 edges are given by a square dissected by any of the two diagonals and the pentagon with no dissecting diagonal.
G.f. = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347. See also the Pólya-Szegő reference.
  • W. Kuich, Languages and the enumeration of planted plane trees. Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32, (1970), 268-280.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, p. 98.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001762, A001763, A002294 - A002296, A006013, A025174, A063548, A064017, A072247, A072248, A134264, A143603, A258708, A256311, A188687 (binomial transform), A346628 (inverse binomial transform).
A column of triangle A102537.
Bisection of A047749 and A047761.
Row sums of triangles A108410 and A108767.
Second column of triangle A062993.
Mod 3 = A113047.
2D Polyominoes: A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A000108 {3,oo}, A002293 {5,oo}.
3D Polyominoes: A007173 (oriented), A027610 (unoriented), A371350 (chiral), A371351 (achiral).
Cf. A130564 (for C(k, n) cases).

Programs

  • GAP
    List([0..25],n->Binomial(3*n,n)/(2*n+1)); # Muniru A Asiru, Oct 31 2018
    
  • Haskell
    a001764 n = a001764_list !! n
    a001764_list = 1 : [a258708 (2 * n) n | n <- [1..]]
    -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    A001764 := n->binomial(3*n,n)/(2*n+1): seq(A001764(n), n=0..25);
    with(combstruct): BB:=[T,{T=Prod(Z,F),F=Sequence(B),B=Prod(F,Z,F)}, unlabeled]:seq(count(BB,size=i),i=0..22); # Zerinvary Lajos, Apr 22 2007
    with(combstruct):BB:=[S, {B = Prod(S,S,Z), S = Sequence(B)}, labelled]: seq(count(BB, size=n)/n!, n=0..21); # Zerinvary Lajos, Apr 25 2008
    n:=30:G:=series(RootOf(g = 1+x*g^3, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
    alias(PS=ListTools:-PartialSums): A001764List := proc(m) local A, P, n;
    A := [1,1]; P := [1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A001764List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    InverseSeries[Series[y-y^3, {y, 0, 24}], x] (* then a(n)=y(2n+1)=ways to place non-crossing diagonals in convex (2n+4)-gon so as to create only quadrilateral tiles *) (* Len Smiley, Apr 08 2000 *)
    Table[Binomial[3n,n]/(2n+1),{n,0,25}] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / n! / (2*n + 1)!)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( serreverse( x - x^3 + O(x^(2*n + 2))), 2*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( m=1, n, A = 1 + x * A^3); polcoeff(A, n))};
    
  • PARI
    b=vector(22);b[1]=1;for(n=2,22,for(i=1,n-1,for(j=1,n-1,for(k=1,n-1,if((i-1)+(j-1)+(k-1)-(n-2),NULL,b[n]=b[n]+b[i]*b[j]*b[k])))));a(n)=b[n+1]; print1(a(0));for(n=1,21,print1(", ",a(n))) \\ Gerald McGarvey, Oct 08 2008
    
  • PARI
    Vec(1 + serreverse(x / (1+x)^3 + O(x^30))) \\ Gheorghe Coserea, Aug 05 2015
    
  • Python
    from math import comb
    def A001764(n): return comb(3*n,n)//(2*n+1) # Chai Wah Wu, Nov 10 2022
  • Sage
    def A001764_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if not b : R.append(D[h])
            else : h += 1
            b = not b
        return R
    A001764_list(22) # Peter Luschny, May 03 2012
    

Formula

From Karol A. Penson, Nov 08 2001: (Start)
G.f.: (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))).
E.g.f.: hypergeom([1/3, 2/3], [1, 3/2], 27/4*x).
Integral representation as n-th moment of a positive function on [0, 27/4]: a(n) = Integral_{x=0..27/4} (x^n*((1/12) * 3^(1/2) * 2^(1/3) * (2^(1/3)*(27 + 3 * sqrt(81 - 12*x))^(2/3) - 6 * x^(1/3))/(Pi * x^(2/3)*(27 + 3 * sqrt(81 - 12*x))^(1/3)))), n >= 0. This representation is unique. (End)
G.f. A(x) satisfies A(x) = 1+x*A(x)^3 = 1/(1-x*A(x)^2) [Cyvin (1998)]. - Ralf Stephan, Jun 30 2003
a(n) = n-th coefficient in expansion of power series P(n), where P(0) = 1, P(k+1) = 1/(1 - x*P(k)^2).
G.f. Rev(x/c(x))/x, where c(x) is the g.f. of A000108 (Rev=reversion of). - Paul Barry, Mar 26 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
a(n) = upper left term in M^n. Top row terms of M^n = (n+1)-th row of triangle A143603, with top row sums generating A006013: (1, 2, 7, 30, 143, 728, ...). (End)
Recurrence: a(0)=1; a(n) = Sum_{i=0..n-1, j=0..n-1-i} a(i)a(j)a(n-1-i-j) for n >= 1 (counts ternary trees by subtrees of the root). - David Callan, Nov 21 2011
G.f.: 1 + 6*x/(Q(0) - 6*x); Q(k) = 3*x*(3*k + 1)*(3*k + 2) + 2*(2*(k^2) + 5*k +3) - 6*x*(2*(k^2) + 5*k + 3)*(3*k + 4)*(3*k + 5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011
D-finite with recurrence: 2*n*(2n+1)*a(n) - 3*(3n-1)*(3n-2)*a(n-1) = 0. - R. J. Mathar, Dec 14 2011
REVERT transform of A115140. BINOMIAL transform is A188687. SUMADJ transform of A188678. HANKEL transform is A051255. INVERT transform of A023053. INVERT transform is A098746. - Michael Somos, Apr 07 2012
(n + 1) * a(n) = A174687(n).
G.f.: F([2/3,4/3], [3/2], 27/4*x) / F([2/3,1/3], [1/2], (27/4)*x) where F() is the hypergeometric function. - Joerg Arndt, Sep 01 2012
a(n) = binomial(3*n+1, n)/(3*n+1) = A062993(n+1,1). - Robert FERREOL, Apr 03 2015
a(n) = A258708(2*n,n) for n > 0. - Reinhard Zumkeller, Jun 23 2015
0 = a(n)*(-3188646*a(n+2) + 20312856*a(n+3) - 11379609*a(n+4) + 1437501*a(n+5)) + a(n+1)*(177147*a(n+2) - 2247831*a(n+3) + 1638648*a(n+4) - 238604*a(n+5)) + a(n+2)*(243*a(n+2) + 31497*a(n+3) - 43732*a(n+4) + 8288*a(n+5)) for all integer n. - Michael Somos, Jun 03 2016
a(n) ~ 3^(3*n + 1/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). - Ilya Gutkovskiy, Nov 21 2016
Given g.f. A(x), then A(1/8) = -1 + sqrt(5), A(2/27) = (-1 + sqrt(3))*3/2, A(4/27) = 3/2, A(3/64) = -2 + 2*sqrt(7/3), A(5/64) = (-1 + sqrt(5))*2/sqrt(5), etc. A(n^2/(n+1)^3) = (n+1)/n if n > 1. - Michael Somos, Jul 17 2018
From Peter Bala, Sep 14 2021: (Start)
A(x) = exp( Sum_{n >= 1} (1/3)*binomial(3*n,n)*x^n/n ).
The sequence defined by b(n) := [x^n] A(x)^n = A224274(n) for n >= 1 and satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 3. Cf. A060941. (End)
G.f.: 1/sqrt(B(x)+(1-6*x)/(9*B(x))+1/3), with B(x):=((27*x^2-18*x+2)/54-(x*sqrt((-(4-27*x))*x))/(2*3^(3/2)))^(1/3). - Vladimir Kruchinin, Sep 28 2021
x*A'(x)/A(x) = (A(x) - 1)/(- 2*A(x) + 3) = x + 5*x^2 + 28*x^3 + 165*x^4 + ... is the o.g.f. of A025174. Cf. A002293 - A002296. - Peter Bala, Feb 04 2022
a(n) = hypergeom([1 - n, -2*n], [2], 1). Row sums of A108767. - Peter Bala, Aug 30 2023
G.f.: z*exp(3*z*hypergeom([1, 1, 4/3, 5/3], [3/2, 2, 2], (27*z)/4)) + 1.
- Karol A. Penson, Dec 19 2023
G.f.: hypergeometric([1/3, 2/3], [3/2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = (3*n)! / (n!*(2*n+1)!). - Allan Bickle, Feb 20 2024
Sum_{n >= 0} a(n)*x^n/(1 + x)^(3*n+1) = 1. See A316371 and A346627. - Peter Bala, Jun 02 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^5). - Seiichi Manyama, Jun 16 2025

A214776 Number A(n,k) of standard Young tableaux of shape [n*k,n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 9, 5, 0, 1, 4, 20, 48, 14, 0, 1, 5, 35, 154, 275, 42, 0, 1, 6, 54, 350, 1260, 1638, 132, 0, 1, 7, 77, 663, 3705, 10659, 9996, 429, 0, 1, 8, 104, 1120, 8602, 40480, 92092, 62016, 1430, 0, 1, 9, 135, 1748, 17199, 115101, 451269, 807300, 389367, 4862, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2012

Keywords

Comments

A(n,k) is also the number of binary words with n*k 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The A(2,2) = 9 words are: 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100.

Examples

			Square array A(n,k) begins:
  1,   1,    1,     1,     1,      1,      1, ...
  0,   1,    2,     3,     4,      5,      6, ...
  0,   2,    9,    20,    35,     54,     77, ...
  0,   5,   48,   154,   350,    663,   1120, ...
  0,  14,  275,  1260,  3705,   8602,  17199, ...
  0,  42, 1638, 10659, 40480, 115101, 272272, ...
		

Crossrefs

Main diagonal gives: A215557.

Programs

  • Maple
    A:= (n, k)-> max(0, binomial((k+1)*n, n)*((k-1)*n+1)/(k*n+1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[n_, k_] := Max[0, Binomial[(k+1)*n, n]*((k-1)*n+1)/(k*n+1)]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 01 2013, after Maple *)

Formula

A(n,k) = max(0, C((k+1)*n,n)*((k-1)*n+1)/(k*n+1)).

A242798 Expansion of -x*d(log((1-x*(2/sqrt(3*x)) * sin((1/3) * arcsin(sqrt(27*x/4))))))/dx.

Original entry on oeis.org

0, 1, 3, 13, 67, 376, 2211, 13378, 82499, 515659, 3255628, 20714354, 132611491, 853226921, 5512508382, 35739673513, 232405291587, 1515159860388, 9900216370689, 64816750480666, 425097621975692, 2792332673312356, 18367642416256334, 120972943783673953
Offset: 0

Views

Author

Vladimir Kruchinin, May 22 2014

Keywords

Crossrefs

Programs

  • Maple
    ogf := n -> ((1 - sqrt(1 - 4*x))/(2*x))^n*x/(1 - x):
    ser := n -> series(ogf(n), x, 46):
    seq(coeff(ser(n), x, n), n=0..23); # Peter Luschny, Jan 25 2019
  • Mathematica
    Table[n*Sum[Binomial[3*n - 2*k - 1, n - k]/(2*n - k), {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 21 2015 *)
    Table[(n Binomial[3 n - 3, n - 1] HypergeometricPFQ[{1, 1 - 2 n, 1 - n}, {3/2 - (3 n)/2, 2 - (3 n)/2}, 1/4])/(2 n - 1), {n, 0, 23}] (* Peter Luschny, Jan 25 2019 *)
  • Maxima
    a(n):=n*sum(binomial(3*n-2*k-1,n-k)/(2*n-k),k,1,n);
    
  • PARI
    a(n) = n*sum(k=1, n, binomial(3*n-2*k-1,n-k)/(2*n-k)); \\ Michel Marcus, Nov 12 2022

Formula

a(n) = n*Sum_{k=1..n} binomial(3*n-2*k-1,n-k)/(2*n-k).
G.f.: x*(x*F'(x)+F(x))/(1-x*F(x)), where F(x) is g.f. of A001764.
D-finite with recurrence: 2*(n-1)*(2*n-1)*(91*n^3 - 531*n^2 + 962*n - 516)*a(n) = (2821*n^5 - 21921*n^4 + 62005*n^3 - 75435*n^2 + 33274*n - 24)*a(n-1) - (2821*n^5 - 21921*n^4 + 62005*n^3 - 75435*n^2 + 33274*n - 24)*a(n-2) + 3*(3*n - 8)*(3*n - 7)*(91*n^3 - 258*n^2 + 173*n + 6)*a(n-3). - Vaclav Kotesovec, Sep 21 2015
a(n) ~ 3^(3*n-1/2) / (7 * sqrt(Pi*n) * 4^n). - Vaclav Kotesovec, Sep 21 2015
From Peter Luschny, Jan 25 2019: (Start)
a(n) = (n/(2*n-1))*C(3*n-3, n-1)*(3F2)([1, 1-2*n, 1-n], [3/2-3*n/2, 2-3*n/2], 1/4).
a(n) = [x^n] (2/(1 + sqrt(1 - 4*x)))^n*(x/(1 - x)). (End)

Extensions

Name edited by Michel Marcus, Jan 26 2019

A165408 An aerated Catalan triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 4, 0, 1, 0, 0, 0, 5, 0, 5, 0, 1, 0, 0, 0, 0, 9, 0, 6, 0, 1, 0, 0, 0, 5, 0, 14, 0, 7, 0, 1, 0, 0, 0, 0, 14, 0, 20, 0, 8, 0, 1, 0, 0, 0, 0, 0, 28, 0, 27, 0, 9, 0, 1, 0, 0, 0, 0, 14, 0, 48, 0, 35, 0, 10, 0, 1, 0, 0, 0, 0, 0, 42, 0, 75, 0, 44, 0, 11, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Aeration of A120730. Row sums are A165407.
T(n,k) is the number of lattice paths from (0,0) to (k,(n-k)/2) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}. - Alois P. Heinz, Sep 20 2022

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 1, 0, 1;
  0, 0, 2, 0,  1;
  0, 0, 0, 3,  0,  1;
  0, 0, 2, 0,  4,  0,  1;
  0, 0, 0, 5,  0,  5,  0,  1;
  0, 0, 0, 0,  9,  0,  6,  0,  1;
  0, 0, 0, 5,  0, 14,  0,  7,  0, 1;
  0, 0, 0, 0, 14,  0, 20,  0,  8, 0,  1;
  0, 0, 0, 0,  0, 28,  0, 27,  0, 9,  0, 1;
  0, 0, 0, 0, 14,  0, 48,  0, 35, 0, 10, 0, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A165408:= func< n,k | n le 3*k select Binomial(Floor((n+k)/2), k)*((3*k-n)/2 +1)*(1+(-1)^(n-k))/(2*(k+1)) else 0 >;
    [A165408(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    b:= proc(x, y) option remember; `if`(y<=x, `if`(x=0, 1,
          b(x-1, y)+`if`(y>0, b(x, y-1), 0)), 0)
        end:
    T:= (n, k)-> `if`((n-k)::even, b(k, (n-k)/2), 0):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 20 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<=x, If[x==0, 1, b[x-1, y] + If[y>0, b[x, y-1], 0]], 0];
    T[n_, k_]:= If[EvenQ[n-k], b[k, (n-k)/2], 0];
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* Jean-François Alcover, Oct 08 2022, after Alois P. Heinz *)
  • SageMath
    def A165408(n,k): return 0 if (n>3*k) else binomial(int((n+k)/2), k)*((3*k-n+2)/2 )*(1+(-1)^(n-k))/(2*(k+1))
    flatten([[A165408(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Nov 09 2022

Formula

T(n,k) = if(n<=3k, C((n+k)/2, k)*((3*k-n)/2 + 1)*(1 + (-1)^(n-k))/(2*(k+1)), 0).
G.f.: 1/(1-x*y-x^3*y/(1-x^3*y/(1-x^3*y/(1-x^3*y/(1-... (continued fraction).
Sum_{k=0..n} T(n, k) = A165407(n).
From G. C. Greubel, Nov 09 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = (1+(-1)^n)*A001405(n/2)/2.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1+(-1)^n)*A105523(n/2)/2.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A165407(n).
Sum_{k=0..n} 2^k*T(n, k) = A165409(n).
T(n, n-2) = A001477(n-2), n >= 2.
T(2*n, n) = (1+(-1)^n)*A174687(n/2)/2.
T(2*n, n+1) = (1-(-1)^n)*A262394(n/2)/2.
T(2*n, n-1) = (1+(-1)^n)*A236194(n/2)/2
T(3*n-2, n) = A000108(n), n >= 1. (End)

A368567 Number of Young tableaux of shape [n, floor(n/2)].

Original entry on oeis.org

1, 1, 2, 3, 9, 14, 48, 75, 275, 429, 1638, 2548, 9996, 15504, 62016, 95931, 389367, 600875, 2466750, 3798795, 15737865, 24192090, 100975680, 154969620, 650872404, 997490844, 4211628008, 6446369400, 27341497800, 41802112192, 177996090624, 271861216539, 1161588834303, 1772528290407, 7596549816030, 11582393855305
Offset: 0

Views

Author

Joerg Arndt, Dec 30 2023

Keywords

Comments

Seemingly also the number of Catalan words of length n with at least ceiling(n/2) zeros. - Sela Fried, Jun 01 2025

Crossrefs

Cf. A174687 (shape [2*n, n]), A026004 (shape [2*n+1, n]).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1$2, 2][n+1],
          (4*n*(3027*n^2-10201*n+4134)*a(n-1)+6*(729*n^3-6201*n^2+9177*n-4921)*
          a(n-2)-3*(3*n-7)*(3027*n+1907)*(3*n-8)*a(n-3))/(8*(n+1)*n*(81*n-689)))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 01 2025

Formula

a(2*n) = A174687(n/2), a(2*n+1) = A026004(n).

A306813 Number of 2n-step paths from (0,0) to (0,n) that stay in the first quadrant (but may touch the axes) consisting of steps (-1,0), (0,1), (0,-1) and (1,-1).

Original entry on oeis.org

1, 0, 3, 10, 20, 237, 770, 3944, 28635, 112360, 744084, 4381083, 21579779, 143815322, 801165187, 4578481584, 29176623983, 165772480380, 1013147794546, 6259309820475, 36974951346176, 230752749518819, 1413352914731005, 8618746801792237, 53986291171211635
Offset: 0

Views

Author

Alois P. Heinz, Mar 11 2019

Keywords

Examples

			a(0) = 1: [(0,0)].
a(2) = 3:
  [(0,0), (0,1), (0,0), (0,1), (0,2)],
  [(0,0), (0,1), (0,2), (0,1), (0,2)],
  [(0,0), (0,1), (0,2), (0,3), (0,2)].
a(3) = 10:
  [(0,0), (0,1), (1,0), (1,1), (1,2), (1,3), (0,3)],
  [(0,0), (0,1), (0,2), (1,1), (1,2), (1,3), (0,3)],
  [(0,0), (0,1), (0,2), (0,3), (1,2), (1,3), (0,3)],
  [(0,0), (0,1), (0,2), (0,3), (0,4), (1,3), (0,3)],
  [(0,0), (0,1), (1,0), (1,1), (1,2), (0,2), (0,3)],
  [(0,0), (0,1), (0,2), (1,1), (1,2), (0,2), (0,3)],
  [(0,0), (0,1), (0,2), (0,3), (1,2), (0,2), (0,3)],
  [(0,0), (0,1), (1,0), (1,1), (0,1), (0,2), (0,3)],
  [(0,0), (0,1), (0,2), (1,1), (0,1), (0,2), (0,3)],
  [(0,0), (0,1), (1,0), (0,0), (0,1), (0,2), (0,3)].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(min(n, x, y, n-x-y)<0, 0,
          `if`(n=0, 1, add(b(n-1, x-d[1], y-d[2]),
           d=[[-1, 0], [0, 1], [0, -1], [1, -1]])))
        end:
    a:= n-> b(2*n, 0, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, x_, y_] := b[n, x, y] = If[Min[n, x, y, n - x - y] < 0, 0, If[n == 0, 1, Sum[b[n - 1, x - d[[1]], y - d[[2]]], {d, {{-1, 0}, {0, 1}, {0, -1}, {1, -1}}}]]];
    a[n_] := b[2n, 0, n];
    a /@ Range[0, 30] (* Jean-François Alcover, May 13 2020, after Maple *)

Formula

a(n) = A306814(2n,n).
a(n) ~ c * d^n / n^2, where d = 6.7004802541941947450873... and c = 0.5171899701803656646... - Vaclav Kotesovec, Apr 13 2019

A185113 Number of dissections of a convex (3n+3)-sided polygon into n pentagons and one triangle (up to equivalence).

Original entry on oeis.org

1, 3, 18, 130, 1020, 8379, 70840, 610740, 5340060, 47187580, 420412278, 3770221338, 33991902308, 307826695050, 2798052616800, 25514463687720, 233296537299228, 2138295980859588, 19639886707062280, 180724535020583400, 1665767679910654320, 15376467276901980315
Offset: 0

Views

Author

F. Chapoton, Feb 03 2011

Keywords

Comments

This sequence counts dissections of a convex 3n+3-sided polygon into one triangle and n pentagons, modulo a simple equivalence relation. This equivalence relation is defined by moving the triangle according to a simple rule (not detailed here).
(The equivalence relation is not defined by a group, but by local moves. Consider the hexagon formed by a pentagon adjacent to the triangle. The local move is half-rotation of such hexagons.)
The terms seem to be odd exactly for indices in A002450. - F. Chapoton Mar 08 2020

Examples

			For n=0, there is just one triangle, so that a(0)=1. For n=1, one can dissect an hexagon in 6 ways into a pentagon and a triangle. In this case, the equivalence relation just relates every such dissection to its half rotated image, so that a(1)=3.
		

Crossrefs

Programs

Formula

a(n) = binomial(4*n+1,n-1)*(n+2)/n = binomial(4*n+1,n)*(n+2)/(3*n+2).
a(n) = binomial(n+2,2) * A000260(n). - F. Chapoton Feb 22 2024

A330798 Triangle read by rows, interpolating between the central binomial coefficients and the central coefficients of the Catalan triangle. T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 2, 2, 6, 15, 9, 20, 84, 112, 48, 70, 420, 900, 825, 275, 252, 1980, 5940, 8580, 6006, 1638, 924, 9009, 35035, 70070, 76440, 43316, 9996, 3432, 40040, 192192, 495040, 742560, 651168, 310080, 62016, 12870, 175032, 1002456, 3174444, 6104700, 7325640, 5372136, 2206413, 389367
Offset: 0

Views

Author

Peter Luschny, Jan 02 2020

Keywords

Examples

			Triangle starts:
  n\k  [0]    [1]     [2]     [3]     [4]     [5]     [6]   [7]
  [0]    1
  [1]    2,     2
  [2]    6,    15,      9
  [3]   20,    84,    112,     48
  [4]   70,   420,    900,    825,    275
  [5]  252,  1980,   5940,   8580,   6006,   1638
  [6]  924,  9009,  35035,  70070,  76440,  43316,   9996
  [7] 3432, 40040, 192192, 495040, 742560, 651168, 310080, 6201
		

Crossrefs

Programs

  • Magma
    A330798:= func< n,k | ((n+1)/(n+k+1))*Binomial(n,k)*Binomial(2*n+k,n) >;
    [A330798(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 23 2023
    
  • Maple
    alias(C=binomial): T := (n, k) -> ((n+1)/(2*n+1))*C(2*n+1, n+k+1)*C(2*n+k, k):
    seq(seq(T(n,k), k=0..n), n=0..8);
  • Mathematica
    T[n_, k_]:= ((n+1)/(n+k+1))*Binomial[n,k]*Binomial[2*n+k,n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 23 2023 *)
  • SageMath
    def A330798(n,k): return ((n+1)/(n+k+1))*binomial(n, k)*binomial(2*n+k, n)
    flatten([[A330798(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 23 2023

Formula

T(n, k) := ((n+1)/(2*n+1))*binomial(2*n+1, n+k+1)*binomial(2*n+k, k).
T(n, 0) = A000984(n).
T(n, n) = A174687(n).
Sum_{k=0..n} T(n, k) = A330801(n).
Sum_{k=0..n} (-1)^k*T(n, k) = 0^n. - G. C. Greubel, May 23 2023

A367872 Number of dissections of a convex (4n+4)-sided polygon into n hexagons and one square (up to equivalence).

Original entry on oeis.org

1, 4, 30, 272, 2695, 28080, 302064, 3321120, 37095201, 419276660, 4782798020, 54960207120, 635339153865, 7380876649216, 86101923008160, 1007980225327680, 11836181297108565, 139353762142502100
Offset: 0

Views

Author

F. Chapoton, Feb 22 2024

Keywords

Comments

This sequence counts dissections of a convex 4n+4-sided polygon into one square and n hexagons, modulo a simple equivalence relation. The equivalence relation is not defined by a group, but by local moves. Consider the octagon formed by a hexagon adjacent to the square. The local move is half-rotation of such octagons.
It seems that a(n) is divisible by n+1.

Examples

			For n=0, there is just one square, so that a(0)=1. For n=1, one can dissect an octagon in 8 ways into a hexagon and a square. In this case, the equivalence relation just relates every such dissection to its half rotated image, so that a(1)=4.
		

Crossrefs

Cf. A174687, A185113 (similar), A118970 (related).

Programs

  • Mathematica
    Table[Binomial[5*n + 2, n]*(n + 3)/(4*n + 3), {n, 0, 50}]
  • PARI
    for(n=0,25, print1(binomial(5*n+2,n)*(n+3)/(4*n+3), ", "))
  • Sage
    def A367872(n):
        return binomial(5*n+2, n) * (n+3) / (4*n+3)
    

Formula

a(n) = binomial(5*n+2,n)*(n+3)/(4*n+3).
Showing 1-9 of 9 results.