A214777 McNugget numbers: numbers of the form 6*x + 9*y + 20*z for nonnegative integers x, y, z.
0, 6, 9, 12, 15, 18, 20, 21, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Scott Chapman, Christopher O'Neill, Factoring in the Chicken McNugget monoid, arXiv:1709.01606 [math.AC], 2017.
- Anita Wah and Henri Picciotto, Lesson in Algebra: Themes, Tools, Concepts
- Eric Weisstein's World of Mathematics, Frobenius Number.
- Eric Weisstein's World of Mathematics, McNugget Numbers.
- Wikipedia, Coin problem
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Haskell
import Data.List (findIndices) a214777 n = a214777_list !! (n-1) a214777_list = findIndices (> 0) a214772_list
-
Mathematica
CoefficientList[Series[- x (x^22 - x^21 + x^17 - x^16 + x^15 - x^14 + x^13 - x^12 + x^11 - x^10 + x^9 + x^8 - 2 x^7 + x^6 + x^5 + 3 x - 6)/(1 - x)^2, {x, 0, 70}], x] (* Vincenzo Librandi, Apr 27 2015 *)
-
Python
def A214777(n): return (0, 6, 9, 12, 15, 18, 20, 21, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 40, 41, 42)[n-1] if n<23 else n+21 # Chai Wah Wu, Feb 24 2025
Formula
G.f.: -x^2*(x^22-x^21+x^17-x^16+x^15-x^14+x^13-x^12+x^11-x^10+x^9+x^8-2*x^7+x^6+x^5+3*x-6) / (x-1)^2. - Colin Barker, Dec 13 2012
a(n) = n + 21 for n >= 23. - Robert Israel, May 01 2015
Comments