A214779 a(n) = 3*a(n-2) - a(n-3) with a(0)=-1, a(1)=1, a(2)=-4.
-1, 1, -4, 4, -13, 16, -43, 61, -145, 226, -496, 823, -1714, 2965, -5965, 10609, -20860, 37792, -73189, 134236, -257359, 475897, -906313, 1685050, -3194836, 5961463, -11269558, 21079225, -39770137, 74507233, -140389636, 263291836, -495676141, 930265144
Offset: 0
Examples
From a(0)=-1 and A214699(0)=0 we obtain (c(1)/c(4))^(2/3) + (c(2)/c(1))^(2/3) + (c(4)/c(2))^(2/3) = 3*3^(1/3), whereas from a(1)=-1 and A214699(1)=3*3^(1/3) we get (c(1)/c(4))^(2/3)*2c(2) + (c(2)/c(1))^(2/3)*2c(4) + (c(4)/c(2))^(2/3)*2c(1) = 3*3^(1/3).
References
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (0,3,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 3, -1}, {-1, 1, -4}, 40] (* T. D. Noe, Jul 30 2012 *)
Formula
G.f.: -(1-x+x^2)/(1-3*x^2+x^3).
Comments