cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214825 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 3.

Original entry on oeis.org

1, 3, 3, 7, 13, 23, 43, 79, 145, 267, 491, 903, 1661, 3055, 5619, 10335, 19009, 34963, 64307, 118279, 217549, 400135, 735963, 1353647, 2489745, 4579355, 8422747, 15491847, 28493949, 52408543, 96394339, 177296831, 326099713, 599790883, 1103187427
Offset: 0

Views

Author

Abel Amene, Jul 28 2012

Keywords

Comments

Part of a group of sequences defined by a(0), a(1)=a(2), a(n) = a(n-1) + a(n-2) + a(n-3) which is a subgroup of sequences with linear recurrences and constant coefficients listed in the index. See Comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,3,3];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+2*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,3,3},40] (* Harvey P. Dale, Oct 05 2013 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;3;3])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    my(x='x+O('x^40)); Vec((1+2*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • SageMath
    ((1+2*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (1+2*x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) - 2*T(n+1) + 4*T(n), where K(n) = A001644(n), and T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019