cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214826 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 4.

Original entry on oeis.org

1, 4, 4, 9, 17, 30, 56, 103, 189, 348, 640, 1177, 2165, 3982, 7324, 13471, 24777, 45572, 83820, 154169, 283561, 521550, 959280, 1764391, 3245221, 5968892, 10978504, 20192617, 37140013, 68311134, 125643764, 231094911, 425049809
Offset: 0

Views

Author

Abel Amene, Jul 29 2012

Keywords

Comments

See Comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,4,4];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+3*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,4,4},33] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+3*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((1+3*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (1+3*x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) - 2*T(n+1) + 5*T(n), where K(n) = A001644(n) and T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019