cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214829 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7.

Original entry on oeis.org

1, 7, 7, 15, 29, 51, 95, 175, 321, 591, 1087, 1999, 3677, 6763, 12439, 22879, 42081, 77399, 142359, 261839, 481597, 885795, 1629231, 2996623, 5511649, 10137503, 18645775, 34294927, 63078205, 116018907, 213392039, 392489151, 721900097, 1327781287, 2442170535
Offset: 0

Views

Author

Abel Amene, Aug 07 2012

Keywords

Comments

See comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,7,7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,7,7}, 40] (* G. C. Greubel, Apr 24 2019 *)
  • PARI
    Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017
    
  • Sage
    ((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1+6*x-x^2)/(1-x-x^2-x^3).
a(n) = -A000073(n) + 6*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019