A214829 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7.
1, 7, 7, 15, 29, 51, 95, 175, 321, 591, 1087, 1999, 3677, 6763, 12439, 22879, 42081, 77399, 142359, 261839, 481597, 885795, 1629231, 2996623, 5511649, 10137503, 18645775, 34294927, 63078205, 116018907, 213392039, 392489151, 721900097, 1327781287, 2442170535
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Crossrefs
Programs
-
GAP
a:=[1,7,7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019 -
Mathematica
LinearRecurrence[{1,1,1}, {1,7,7}, 40] (* G. C. Greubel, Apr 24 2019 *)
-
PARI
Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017
-
Sage
((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
Formula
G.f.: (1+6*x-x^2)/(1-x-x^2-x^3).
Comments