cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214840 Averages y of twin prime pairs that satisfy y = x^2 + x - 2.

Original entry on oeis.org

4, 18, 108, 180, 270, 810, 4158, 4968, 5850, 7308, 10710, 13338, 17028, 26730, 32940, 38610, 70488, 72090, 102078, 117990, 122148, 128520, 132858, 153270, 228960, 231840, 240588, 246510, 249498, 296478, 326610, 372708, 391248, 417960, 429678, 449568, 453600
Offset: 1

Views

Author

Michael G. Kaarhus, Mar 07 2013

Keywords

Comments

The above equation is one of a family of twin prime average-generating quadratics y = x^2 + x - c, where c can be any even integer not of the form 6d + 4.
For f(x) = x^2 + x - c, f(-x) = f(x-1).
If c = 0, the positive x that satisfy y = x^2 + x - c are A088485.

Examples

			x =  2,  x =  4,  x = 10,  x = 13,  x = 16
x = 28,  x = 64,  x = 70,  x = 76,  x = 85
		

Crossrefs

Subsequence of A014574. Cf. A088485.

Programs

  • Mathematica
    s = {4}; Do[If[PrimeQ[n - 1] && PrimeQ[n + 1] && IntegerQ[Sqrt[9 + 4 n]], AppendTo[s, n]], {n, 18, 453600, 6}]; s (* Zak Seidov, Mar 21 2013 *)
    Select[Mean/@Select[Partition[Prime[Range[100000]],2,1],#[[2]]-#[[1]]==2&],IntegerQ[ Sqrt[ 9+4#]]&] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    p=2;forprime(q=3,1e6,if(q-p>2,p=q;next);n=sqrtint(y=(p+q)\2);if(n^2+n-2==y,print1(y", "));p=q) \\ Charles R Greathouse IV, Mar 20 2013
    
  • PARI
    test(y)=if(isprime(y-1)&&isprime(y+1),print1(", "y))
    print1(4);for(n=0,100,test(18*n*(2*n+1));test(18*(2*n^2+3*n+1))) \\ Charles R Greathouse IV, Mar 20 2013