A214842 Anti-multiply-perfect numbers. Numbers n for which sigma*(n)/n is an integer, where sigma*(n) is the sum of the anti-divisors of n.
1, 2, 5, 8, 41, 56, 77, 946, 1568, 2768, 5186, 6874, 8104, 17386, 27024, 84026, 167786, 2667584, 4775040, 4921776, 27914146, 505235234, 3238952914, 73600829714, 455879783074, 528080296234, 673223621664, 4054397778846, 4437083907194, 4869434608274, 6904301600914, 7738291969456
Offset: 1
Keywords
Examples
Anti-divisors of 77 are 2, 3, 5, 9, 14, 17, 22, 31, 51. Their sum is 154 and 154/77=2.
Programs
-
Maple
A214842:= proc(q) local a,k,n; for n from 1 to q do a:=0; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od; if type(a/n,integer) then print(n); fi; od; end: A214842(10^10);
-
Mathematica
a066417[n_Integer] := Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]]; a214842[n_Integer] := Select[Range[n], IntegerQ[a066417[#]/#] &]; a214842[1200] (* Michael De Vlieger, Aug 08 2014 *)
-
PARI
sad(n) = vecsum(select(t->n%t && t
A066417 isok(n) = denominator(sad(n)/n) == 1; \\ Michel Marcus, Oct 12 2019 -
Python
A214842 = [n for n in range(1,10**4) if not (sum([d for d in range(2,n,2) if n%d and not 2*n%d])+sum([d for d in range(3,n,2) if n%d and 2*n%d in [d-1,1]])) % n] # Chai Wah Wu, Aug 12 2014
Extensions
Verified there are no missing terms up to a(24) by Donovan Johnson, Apr 13 2013
a(25)-a(27) by Jud McCranie, Aug 31 2019
a(28)-a(32) by Jud McCranie, Oct 10 2019
Comments