cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214843 Number of formula representations of n using addition, exponentiation and the constant 1.

Original entry on oeis.org

1, 1, 2, 6, 16, 48, 152, 502, 1694, 5832, 20420, 72472, 260096, 942304, 3441584, 12658128, 46842920, 174289108, 651610504, 2446686568, 9222628592, 34886505168, 132387975040, 503857644160, 1922782984688, 7355686851696, 28203617340756, 108368274550664
Offset: 1

Views

Author

Alois P. Heinz, Mar 08 2013

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 11+.
a(3) = 2: 111++, 11+1+.
a(4) = 6: 1111+++, 111+1++, 11+11++, 111++1+, 11+1+1+, 11+11+^.
a(5) = 16: 11111++++, 1111+1+++, 111+11+++, 1111++1++, 111+1+1++, 111+11+^+, 11+111+++, 11+11+1++, 111++11++, 11+1+11++, 1111+++1+, 111+1++1+, 11+11++1+, 111++1+1+, 11+1+1+1+, 11+11+^1+.
All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1,
           add(a(i)*a(n-i), i=1..n-1)+
           add(a(root(n, p))*a(p), p=divisors(igcd(seq(i[2],
               i=ifactors(n)[2]))) minus {0, 1}))
        end:
    seq(a(n), n=1..40);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[i]*a[n-i], {i, 1, n-1}] + Sum[a[n^(1/p)] * a[p], {p, Divisors[GCD @@ FactorInteger[n][[All, 2]]] ~Complement~ {0, 1} } ];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)