A214844 Number of partitions of 2^n into three distinct primes.
0, 0, 0, 1, 3, 2, 10, 8, 32, 18, 75, 51, 292, 140, 518, 534, 2167, 1292, 6055, 4318, 23899, 16589, 53108, 46683, 312340, 159483, 567857, 639256, 2810965, 1826974
Offset: 1
Keywords
Examples
a(4) = 1 because 2^4 = 16 = 2 + 3 + 11 (1 partition), a(5) = 3 because 2^5 = 32 = 2 + 7 + 23 = 2 + 11 + 19 = 2 + 13 + 17 (3 partitions).
Crossrefs
Cf. A125688.
Programs
-
Mathematica
Do[Print[{k, n=2^k; s=0; Do[p=Prime[i]; Do[q=Prime[j]; r=n-p-q; If[r>q && PrimeQ[r], s++], {j, i+1, PrimePi[(n-p)/2]}], {i,1}]; s}], {k,30}] Table[m = 2^n - 2; cnt = 0; p = 3; While[p < m/2, If[PrimeQ[m - p], cnt++]; p = NextPrime[p]]; cnt, {n, 20}] (* T. D. Noe, Mar 08 2013 *)
-
PARI
a(n)=my(N=2^n-2,s);forprime(p=3,N/2-1,s+=ispseudoprime(N-p));s \\ Charles R Greathouse IV, Mar 08 2013
Formula
a(n) = A061357(2^(n-1) - 1) for n > 2. - Charles R Greathouse IV, Mar 08 2013