cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214844 Number of partitions of 2^n into three distinct primes.

Original entry on oeis.org

0, 0, 0, 1, 3, 2, 10, 8, 32, 18, 75, 51, 292, 140, 518, 534, 2167, 1292, 6055, 4318, 23899, 16589, 53108, 46683, 312340, 159483, 567857, 639256, 2810965, 1826974
Offset: 1

Views

Author

Zak Seidov, Mar 08 2013

Keywords

Examples

			a(4) = 1 because 2^4 = 16 = 2 + 3 + 11 (1 partition),
a(5) = 3 because 2^5 = 32 = 2 + 7 + 23 = 2 + 11 + 19 = 2 + 13 + 17 (3 partitions).
		

Crossrefs

Cf. A125688.

Programs

  • Mathematica
    Do[Print[{k, n=2^k; s=0; Do[p=Prime[i]; Do[q=Prime[j]; r=n-p-q; If[r>q && PrimeQ[r], s++], {j, i+1, PrimePi[(n-p)/2]}], {i,1}]; s}], {k,30}]
    Table[m = 2^n - 2; cnt = 0; p = 3; While[p < m/2, If[PrimeQ[m - p], cnt++]; p = NextPrime[p]]; cnt, {n, 20}] (* T. D. Noe, Mar 08 2013 *)
  • PARI
    a(n)=my(N=2^n-2,s);forprime(p=3,N/2-1,s+=ispseudoprime(N-p));s \\ Charles R Greathouse IV, Mar 08 2013

Formula

a(n) = A061357(2^(n-1) - 1) for n > 2. - Charles R Greathouse IV, Mar 08 2013