A214879 Numbers that cannot be written as sum of the squares of two primes.
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A045636 (complement).
Programs
-
Haskell
import Data.List (elemIndices) a214879 n = a214879_list !! (n-1) a214879_list = elemIndices 0 a045698_list -- Reinhard Zumkeller, Jul 29 2012
-
PARI
is(n)=forprime(p=2,sqrtint(n), if(isprimepower(n-p^2)==2, return(0))); 1 \\ Charles R Greathouse IV, Sep 01 2015
-
Python
from sympy import primerange def aupto(limit): primes = list(primerange(2, int((limit-4)**.5)+2)) nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]] return sorted(set(range(limit+1)) - set(k for k in nums if k <= limit)) print(aupto(76)) # Michael S. Branicky, Aug 13 2021
Formula
a(n) ~ n. - Charles R Greathouse IV, Sep 01 2015
Comments