A214674 Conway's subprime Fibonacci sequence.
1, 1, 2, 3, 5, 4, 3, 7, 5, 6, 11, 17, 14, 31, 15, 23, 19, 21, 20, 41, 61, 51, 56, 107, 163, 135, 149, 142, 97, 239, 168, 37, 41, 39, 40, 79, 17, 48, 13, 61, 37, 49, 43, 46, 89, 45, 67, 56, 41, 97, 69, 83, 76, 53, 43, 48, 13
Offset: 1
References
- Siobhan Roberts, Genius At Play: The Curious Mind of John Horton Conway, Bloomsbury, 2015, pages xx-xxi.
Links
- Peter Kagey, Table of n, a(n) for n = 1..250
- Sara Barrows, Emily Noye, Sarah Uttormark, and Matthew Wright, Three's A Crowd: An Exploration of Subprime Tribonacci Sequences, College Math. J. (2023).
- Richard K. Guy, Tanya Khovanova and Julian Salazar, Conway's subprime Fibonacci sequences, arXiv:1207.5099 [math.NT], 2012-2014.
- Tanya Khovanova, Conway’s Subprime Fibonacci Sequences, Math Blog, July 2012.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
Programs
-
Mathematica
guyKhoSal[{a_, b_}] := Block[{c, l, r}, c = NestWhile[(p = Tr[Take[#, -2]]; If[PrimeQ[p], q = p, q = p/Part[FactorInteger[p, FactorComplete -> False], 1, 1]]; Flatten[{#, q}]) &, {a, b}, FreeQ[Partition[#1, 2, 1], Take[#2, -2]] &, 2, 1000]; l = Length[c]; r = Tr@Position[Partition[c,2,1], Take[c,-2], 1, 1]; l-r-1; c]; guyKhoSal[{1,1}] f[s_List] := Block[{a = s[[-2]] + s[[-1]]}, If[ PrimeQ[a], Append[s, a], Append[s, a/FactorInteger[a][[1, 1]] ]]]; Nest[f, {1, 1}, 73] (* Robert G. Wilson v, Aug 09 2012 *)
-
PARI
fatw(n,a=[0,1],p=[])={for(i=2,n,my(f=factor(a[i]+a[i-1])~);for(k=1,#f,setsearch(p,f[1,k])&next;f[2,k]--;p=setunion(p,Set(f[1,k]));break);a=concat(a,factorback(f~)));a} fatw(99) /* M. F. Hasler, Jul 25 2012 */
Comments