A214931 Number of self-avoiding walks of any length from NW to SW corners of a grid or lattice with 4 rows and n columns.
1, 8, 38, 178, 844, 4012, 19072, 90658, 430938, 2048450, 9737260, 46285868, 220018976, 1045856010, 4971456754, 23631725866, 112332963420, 533972624844, 2538228811648, 12065422836242, 57352760145834, 272625264866098, 1295919060481740, 6160126839867820
Offset: 1
Examples
For n=2, and moves U(p), D(own), R(ight), L(eft), the a(2)=8 walks are {DDD, DRDDL, DRDLD, DDRDL, RDDDL, RDDLD, RDLDD, RDLDRDL} with only the last touching all 8 squares of the grid. Illustration of the 8 walks of a(2): .__ __ __ . . . . __ __| . | . | |__ |__ | . | . __| | . __| . | __| . | |__ | . |__ | . | . __| | . __| __| | . __|
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Formula
Empirical recurrence: a(1,...,5) = (1, 8, 38, 178, 844), a(n) = 7*a(n-1) - 12*a(n-2) + 7*a(n-3) - 3*a(n-4) - 2*a(n-5). - Giovanni Resta, Mar 13 2013
Empirical g.f.: x*(1+x-6*x^2+x^3+x^4)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5). - Bruno Berselli, Mar 13 2013
Extensions
Missing a(7) and a(13)-a(14) from Giovanni Resta, Mar 13 2013
a(15)-a(24) from Andrew Howroyd, Apr 08 2016