cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214948 a(n) is the sum over all proper integer partitions of n of the previous terms.

Original entry on oeis.org

1, 2, 6, 19, 51, 148, 395, 1095, 2945, 8020, 21597, 58518, 157746, 426250, 1149832, 3104236, 8375167, 22603530, 60988687, 164579663, 444082316, 1198312390, 3233419264, 8724918311, 23542640336, 63526028693, 171413973501, 462531951559, 1248062990751, 3367686427976
Offset: 1

Views

Author

Olivier Gérard, Jul 30 2012

Keywords

Comments

By "proper integer partition", one means that the case {n} is excluded for having only one part, equal to the number partitioned.
The growth of this function is exponential a(n) -> c * exp(n). [This is not correct, a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399... and c = 0.39308289517441096263558422597609193642795355676880812197435683468376... - Vaclav Kotesovec, Dec 27 2023]

Examples

			a(4) = (a(3)+a(1))+(a(2)+a(2))+(a(2)+a(1)+a(1))+(a(1)+a(1)+a(1)+a(1)) = (6 +  1) + (2 + 2) + (2 + 2*1) + (4*1) = 7 + 4 + 4 + 4 = 19.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<2, [1, n], `if`(i<1, 0,
          b(n, i-1)+(p-> p+[0, p[1]*a(i)])(b(n-i, min(n-i, i)))))
        end:
    a:= n-> b(n, n-1)[2]:
    seq(a(n), n=1..33);  # Alois P. Heinz, Dec 27 2023
  • Mathematica
    Clear[a]; a[1] := 1; a[n_Integer] :=
    a[n] = Plus @@ Map[Function[p, Plus @@ Map[a, p]], Drop[IntegerPartitions[n], 1]]; Table[ a[n], {n,1,30}]

Formula

a(n) = sum( sum( a(i), i in p) , p in P*(n)) where P*(n) is the set of all integer partitions of n excluding {n}, p is a partition of P*(n), i is a part of p.
a(n) ~ exp(k) * a(n-1), k = 0.992632731... (conjecture). - Bill McEachen, Dec 26 2023