A214948 a(n) is the sum over all proper integer partitions of n of the previous terms.
1, 2, 6, 19, 51, 148, 395, 1095, 2945, 8020, 21597, 58518, 157746, 426250, 1149832, 3104236, 8375167, 22603530, 60988687, 164579663, 444082316, 1198312390, 3233419264, 8724918311, 23542640336, 63526028693, 171413973501, 462531951559, 1248062990751, 3367686427976
Offset: 1
Examples
a(4) = (a(3)+a(1))+(a(2)+a(2))+(a(2)+a(1)+a(1))+(a(1)+a(1)+a(1)+a(1)) = (6 + 1) + (2 + 2) + (2 + 2*1) + (4*1) = 7 + 4 + 4 + 4 = 19.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2320 (first 70 terms from Vincenzo Librandi)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n<2, [1, n], `if`(i<1, 0, b(n, i-1)+(p-> p+[0, p[1]*a(i)])(b(n-i, min(n-i, i))))) end: a:= n-> b(n, n-1)[2]: seq(a(n), n=1..33); # Alois P. Heinz, Dec 27 2023
-
Mathematica
Clear[a]; a[1] := 1; a[n_Integer] := a[n] = Plus @@ Map[Function[p, Plus @@ Map[a, p]], Drop[IntegerPartitions[n], 1]]; Table[ a[n], {n,1,30}]
Formula
a(n) = sum( sum( a(i), i in p) , p in P*(n)) where P*(n) is the set of all integer partitions of n excluding {n}, p is a partition of P*(n), i is a part of p.
a(n) ~ exp(k) * a(n-1), k = 0.992632731... (conjecture). - Bill McEachen, Dec 26 2023
Comments