A214951 a(n) = 3*a(n-1) + 6*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=26.
2, 5, 26, 110, 491, 2159, 9533, 42044, 185489, 818264, 3609770, 15924383, 70250033, 309906167, 1367143082, 6031116281, 26606113502, 117372181274, 517784341115, 2284192224491, 10076654901437, 44452902392372, 196102828810229, 865102555686356, 3816377542312814
Offset: 0
Examples
We have 2*9^(1/3) = (c(2)/c(1))^(1/3) + (c(4)/c(2))^(1/3) + (c(1)/c(4))^(1/3), 5*9^(1/3) = (c(1)/c(2))^(2/3) + (c(2)/c(4))^(2/3) + (c(4)/c(1))^(2/3), and 110*9^(1/3)=(c(1)/c(2))^(8/3) + (c(2)/c(4))^(8/3) + (c(4)/c(1))^(8/3). Moreover we obtain a(6)-a(2)-a(1)-a(0)=9500, a(12)-a(2)-a(1)-a(0)=70250000 and a(12)-a(6)=3^3*43*a(1)*a(3)^2. - _Roman Witula_, Oct 06 2012
References
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012. (in review)
Links
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,6,1).
Programs
-
Mathematica
LinearRecurrence[{3, 6, 1}, {2, 5, 26}, 40] (* T. D. Noe, Jul 30 2012 *)
-
PARI
Vec((2-x-x^2)/(1-3*x-6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
Formula
G.f.: (2-x-x^2)/(1-3*x-6*x^2-x^3).
a(n+1) - a(n) = A214778(n+1). - Roman Witula, Oct 06 2012
Comments