A214979 A179180 - A214977.
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 4, 3, 3, 2, 2, 1, 2, 2, 1, 1, 1, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 7, 6, 5, 5, 5, 4, 4, 4, 2, 1, 2, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 9, 10, 11, 13, 15, 13, 12, 11, 9, 8, 8, 8, 8
Offset: 1
Keywords
Examples
(See A214977 and A179180.)
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Programs
-
Mathematica
z = 200; s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]]; t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]]; u[n_] := Sum[t1[[k]], {k, 1, n}] u1 = Table[u[n], {n, 1, z}] (* A214977 *) s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]]; t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]]; v[n_] := Sum[t2[[k]], {k, 1, n}] v1 = Table[v[n], {n, 1, z}] (* A179180 *) w=v1-u1 (* A214979 *) Flatten[Position[w, 0]] (* A214980 *) (* Peter J. C. Moses, Oct 18 2012 *)
Comments