cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215005 a(n) = a(n-2) + a(n-1) + floor(n/2) + 1 for n > 1 and a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 6, 12, 21, 37, 62, 104, 171, 281, 458, 746, 1211, 1965, 3184, 5158, 8351, 13519, 21880, 35410, 57301, 92723, 150036, 242772, 392821, 635607, 1028442, 1664064, 2692521, 4356601, 7049138, 11405756, 18454911, 29860685, 48315614, 78176318, 126491951, 204668289
Offset: 0

Views

Author

Alex Ratushnyak, Jul 31 2012

Keywords

Comments

If the seed is {1,1}: 1, 1, 4, 7, 14, 24, 42, 70, 117, 192, 315, 513, 835, 1355, 2198, 3561, 5768, 9338, 15116, 24464, 39591, 64066, 103669, 167747, ...
If the seed is {1,2}: A129696.
Same seed, but -1 in the formula instead of +1: b(n)=a(n-2)+1 for n>=2, i.e. 0, 1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 172, 282, 459, 747, 1212, 1966, 3185, 5159, 8352, 13520, 21881, 35411, 57302, 92724, 150037, 242773, 392822, ...

Crossrefs

Cf. A129696 (same formula, seed {1,2}).
Cf. A000071 (a(n+1) = a(n-1) + a(n) + 1).
Cf. A000045.

Programs

  • Magma
    [2*Fibonacci(n+2) -(2*n+9-(-1)^n)/4: n in [0..50]]; // G. C. Greubel, Apr 05 2024
    
  • Mathematica
    LinearRecurrence[{2,1,-3,0,1}, {0,1,3,6,12}, 39] (* Jean-François Alcover, Oct 05 2017 *)
    nxt[{n_,a_,b_}]:={n+1,b,a+b+Floor[(n+1)/2]+1}; NestList[nxt,{1,0,1},40][[;;,2]] (* Harvey P. Dale, Feb 20 2025 *)
  • PARI
    concat(0, Vec(x*(1+x-x^2)/((1-x)^2*(1+x)*(1-x-x^2)) + O(x^100))) \\ Colin Barker, Sep 16 2015
    
  • Python
    prpr = 0
    prev = 1
    for n in range(2,100):
        print(prpr, end=', ')
        curr = prpr+prev + 1 + n//2
        prpr = prev
        prev = curr
    
  • SageMath
    [2*fibonacci(n+2) -(n+4+(n%2))//2 for n in range(51)] # G. C. Greubel, Apr 05 2024

Formula

a(n) = 2*Fibonacci(n+2) - (2*n + 9 - (-1)^n)/4. - Vaclav Kotesovec, Aug 11 2012
From Colin Barker, Sep 16 2015: (Start)
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5) for n>4.
G.f.: x*(1+x-x^2) / ((1-x)^2*(1+x)*(1-x-x^2)). (End)
E.g.f.: 2*exp(x/2)*(cosh(sqrt(5)*x/2) + (3/sqrt(5))*sinh(sqrt(5)*x/2)) - (1/2)*((x+4)*cosh(x) + (x+5)*sinh(x)). - G. C. Greubel, Apr 05 2024