A215006 a(0)=0, a(n+1) is the least k>a(n) such that k+a(n)+n+1 is a Fibonacci number.
0, 1, 2, 3, 6, 10, 18, 30, 51, 84, 139, 227, 371, 603, 980, 1589, 2576, 4172, 6756, 10936, 17701, 28646, 46357, 75013, 121381, 196405, 317798, 514215, 832026, 1346254, 2178294, 3524562, 5702871, 9227448, 14930335, 24157799, 39088151, 63245967, 102334136, 165580121
Offset: 0
Examples
For n + 1 = 7, a(n + 1) = 30 is the least k > a(n) = a(6) = 18 such that k + a(n) + n + 1 = 30 + 18 + 6 + 1 = 55 is a Fibonacci number. - _David A. Corneth_, Sep 03 2016
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,0,1).
Programs
-
Magma
[n le 3 select n else Self(n)+Self(n-1)+Floor(n/2)-1: n in [0..40]]; // Bruno Berselli, Jul 31 2012
-
Mathematica
Join[{0}, LinearRecurrence[{2, 1, -3, 0, 1}, {1, 2, 3, 6, 10}, 39]] (* Jean-François Alcover, Oct 05 2017 *)
-
Python
prpr = 0 prev = 1 fib = [0]*100 for n in range(100): fib[n] = prpr curr = prpr+prev prpr = prev prev = curr a = 0 for n in range(1,55): print(a, end=',') b = c = 0 while c <= a: c = fib[b] - a - n b += 1 a=c
-
Python
print(0, end=',') prpr = 1 prev = 2 for n in range(3,56): print(prpr, end=',') curr = prpr+prev + n//2 - 1 prpr = prev prev = curr
Formula
a(n) = a(n-1) +a(n-2) +floor(n/2) -1 with n>1, a(0)=0, a(1)=1.
From Bruno Berselli, Jul 31 2012: (Start)
G.f.: x*(1-2*x^2+x^3+x^4)/((1+x)*(1-x)^2*(1-x-x^2)).
a(n) = Fibonacci(n+2)-A004526(n+1) with n>0, a(0)=0.
a(n) = A129696(n-1)+1 with n>1, a(0)=0, a(1)=1. (End)
Extensions
Definition corrected by David A. Corneth, Sep 03 2016
Comments