cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215007 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=1, a(1)=3, a(2)=9.

Original entry on oeis.org

1, 3, 9, 28, 91, 308, 1078, 3871, 14161, 52479, 196196, 737793, 2785160, 10540390, 39955041, 151615947, 575723785, 2187128524, 8311078307, 31587815308, 120069510526, 456434707519, 1735184512425, 6596692255391, 25079305566420
Offset: 0

Views

Author

Roman Witula, Jul 31 2012

Keywords

Comments

The sequence {a(n)} we shall call the Berndt-type sequence of type 1 for the argument 2*Pi/7; our motivation comes from Berndt's et al. and my papers (see the first formula below, which is in agreement with the respective identities discussed in these papers).
We note that a(n) = A105849(n) for n=0,1,...,5, and A105849(6) - a(6) = 1. Moreover we have a(n) = 2*A215008(n) - A215008(n+1).

References

  • R. Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • GAP
    a:=[1,3,9];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3))); // G. C. Greubel, Feb 01 2018
    
  • Maple
    seq(coeff(series((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 03 2019
  • Mathematica
    LinearRecurrence[{7,-14,7}, {1,3,9}, 30] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    Vec((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    def A215007_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)).list()
    A215007_list(30) # G. C. Greubel, Oct 03 2019
    

Formula

a(n) = (1/sqrt(7))*(cot(8*Pi/7)*(s(1))^2n + cot(4*Pi/7)*(s(4))^2n + cot(2*Pi/7)*(s(2))^2n), where s(j) := 2*sin(2Pi*j/7).
G.f.: (1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3).