A215007 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=1, a(1)=3, a(2)=9.
1, 3, 9, 28, 91, 308, 1078, 3871, 14161, 52479, 196196, 737793, 2785160, 10540390, 39955041, 151615947, 575723785, 2187128524, 8311078307, 31587815308, 120069510526, 456434707519, 1735184512425, 6596692255391, 25079305566420
Offset: 0
References
- R. Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt and A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt and L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- R. Wituła, P. Lorenc, M. Różański, and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014.
- Index entries for linear recurrences with constant coefficients, signature (7, -14, 7).
Programs
-
GAP
a:=[1,3,9];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3))); // G. C. Greubel, Feb 01 2018 -
Maple
seq(coeff(series((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 03 2019
-
Mathematica
LinearRecurrence[{7,-14,7}, {1,3,9}, 30] (* G. C. Greubel, Feb 01 2018 *)
-
PARI
Vec((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012
-
Sage
def A215007_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)).list() A215007_list(30) # G. C. Greubel, Oct 03 2019
Formula
a(n) = (1/sqrt(7))*(cot(8*Pi/7)*(s(1))^2n + cot(4*Pi/7)*(s(4))^2n + cot(2*Pi/7)*(s(2))^2n), where s(j) := 2*sin(2Pi*j/7).
G.f.: (1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3).
Comments