A215011 a(n) = least k>0 such that triangular(n) divides Fibonacci(k).
1, 4, 12, 15, 20, 8, 24, 12, 60, 10, 60, 84, 56, 40, 60, 18, 36, 36, 90, 120, 40, 120, 24, 300, 175, 252, 72, 168, 140, 60, 60, 60, 180, 360, 120, 228, 342, 252, 420, 60, 40, 88, 660, 60, 120, 48, 48, 168, 1400, 900, 252, 189, 108, 180, 120, 72, 252, 406, 1740
Offset: 1
Keywords
Examples
Triangular(2)=3, least k>0 such that 3 divides Fibonacci(k) is k=4, so a(2)=4.
Crossrefs
Cf. A085779 (least k such that triangular(n) divides k!).
Cf. A001177 (least k such that n divides Fibonacci(k)).
Cf. A132632 (least k such that n^2 divides Fibonacci(k)).
Cf. A132633 (least k such that n^3 divides Fibonacci(k)).
Cf. A215453 (least k such that n^n divides Fibonacci(k)).
Cf. A214528 (least k such that n! divides Fibonacci(k)).
Programs
-
Mathematica
lk[n_]:=Module[{k=1,t=(n(n+1))/2},While[Mod[Fibonacci[k],t]!=0,k++];k]; Array[lk,60] (* Harvey P. Dale, Jun 19 2021 *)
-
Python
TOP = 333 prpr = y = 0 prev = k = 1 res = [-1]*TOP while y
Comments