A215050 Number of primes of the form 1 + b^16 for 1 < b < 10^n.
1, 5, 48, 291, 2194, 17907, 152447, 1322985, 11669082
Offset: 1
Examples
a(1) = 1 because the only Fermat prime F_4(b) where b<10^1 is the prime 65537.
Links
Programs
-
Mathematica
Table[Length[Select[Range[2,10^n-1]^16 + 1, PrimeQ]], {n, 5}] (* T. D. Noe, Aug 02 2012 *) Module[{nn=8,t},t=Table[If[PrimeQ[n^16+1],1,0],{n,2,10^nn}];Table[Total[ Take[t,10^i-1]],{i,nn}]] (* Harvey P. Dale, Sep 14 2015 *)
-
PARI
a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^16+1))
Formula
a(n) = A214455(16*n) - 1.
Extensions
a(9) from Kellen Shenton, Aug 10 2020
Comments