A215082 Related to Fibonacci numbers, see the Formula section.
0, 1, 1, 3, 4, 5, 8, 12, 17, 23, 35, 43, 66, 81, 124, 148, 229, 266, 414, 476, 742, 842, 1318, 1478, 2320, 2581, 4059, 4481, 7062, 7743, 12224, 13328, 21071, 22857, 36185, 39073, 61930, 66605, 105678, 113242, 179847, 192084, 305326, 325128, 517212, 549252
Offset: 0
Examples
a(2) + a(3) = 2*2 = 4 -> a(3) = 3. a(4) = a(3) + a(1) = 3 + 1 = 4. a(4) + a(5) = 3*3 = 9 -> a(5) = 5. a(6) = a(5) + a(3) = 5 + 3 = 8 , etc.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [-1, -3, -2, 1, 2, 1][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 4, 8, 17, 35>>, <<1, 3, 5, 12, 23, 43>>))[1, 1]: seq (a(n), n=0..50); # Alois P. Heinz, Aug 02 2012
Formula
a(0) = 0, a(1) = 1, a(2) = 1, a(2n) + a(2n+1) = (n+1)*Fibonacci(n+2), a(2n) = a(2n-1) + a(2n-3).
G.f.: x*(2*x^2+1)*(x^3+x+1) / ((x^2-x+1)*(x^2+x+1)*(x^4+x^2-1)^2). - Alois P. Heinz, Aug 02 2012