A215095 a(0)=0, a(1)=1, a(n) = least k>a(n-1) such that k+a(n-2) is a Jacobsthal number.
0, 1, 3, 4, 8, 17, 35, 68, 136, 273, 547, 1092, 2184, 4369, 8739, 17476, 34952, 69905, 139811, 279620, 559240, 1118481, 2236963, 4473924, 8947848, 17895697, 35791395, 71582788, 143165576, 286331153, 572662307, 1145324612, 2290649224, 4581298449, 9162596899
Offset: 0
Keywords
Programs
-
Python
prpr = 0 prev = 1 jac = [0]*10000 for n in range(10000): jac[n] = prpr curr = prpr*2 + prev prpr = prev prev = curr prpr, prev = 0, 1 for n in range(1, 44): print(prpr, end=', ') b = c = 0 while c<=prev: c = jac[b] - prpr b+=1 prpr = prev prev = c
Formula
Conjecture: G.f. (x+2*x^2)/(1-x-x^2-x^3-2*x^4). - David Scambler, Aug 06 2012
Comments