A215142 Numbers n such that the difference between the greatest prime divisor of n and the sum of the other distinct prime divisors equals 1.
6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 231, 288, 324, 330, 384, 432, 455, 486, 546, 576, 648, 660, 663, 693, 768, 864, 935, 972, 990, 1092, 1122, 1152, 1235, 1296, 1311, 1320, 1458, 1463, 1482, 1536, 1617, 1638, 1650, 1728, 1944, 1955
Offset: 1
Keywords
Examples
1235 is in the sequence because 1235 = 5*13*19 and 19 - (5+13) = 1.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A033845.
Programs
-
Maple
with(numtheory):for n from 2 to 2000 do:x:=factorset(n):m:=nops(x):s:=0: s:=sum( ' x[i] ', 'i'=1..m):q:=s-x[m]:if x[m]-q =1 then printf(`%d, `,n):else fi:od:
-
Mathematica
gpdQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},Max[f]-Total[ Most[ f]] == 1]; Select[Range[2,2000],gpdQ] (* Harvey P. Dale, Aug 28 2013 *)
Comments