A215144 a(n) = 19*n + 1.
1, 20, 39, 58, 77, 96, 115, 134, 153, 172, 191, 210, 229, 248, 267, 286, 305, 324, 343, 362, 381, 400, 419, 438, 457, 476, 495, 514, 533, 552, 571, 590, 609, 628, 647, 666, 685, 704, 723, 742, 761, 780, 799, 818, 837, 856, 875, 894, 913, 932, 951, 970, 989
Offset: 0
Links
- Jeremy Gardiner, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[1,20]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
-
Mathematica
Range[1, 1000, 19] 19*Range[0,60]+1 (* Harvey P. Dale, Nov 14 2014 *) LinearRecurrence[{2,-1}, {1,20}, 50] (* G. C. Greubel, Apr 19 2018 *)
-
PARI
for(n=0, 50, print1(19*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
Formula
From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+18*x)/(1-x)^2.
E.g.f.: (1+19*x)*exp(x). (End)