A215146 a(n) = 21*n + 1.
1, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 232, 253, 274, 295, 316, 337, 358, 379, 400, 421, 442, 463, 484, 505, 526, 547, 568, 589, 610, 631, 652, 673, 694, 715, 736, 757, 778, 799, 820, 841, 862, 883, 904, 925, 946, 967, 988, 1009, 1030, 1051, 1072
Offset: 0
Links
- Jeremy Gardiner, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[1,22]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
-
Mathematica
Range[1, 1000, 21] LinearRecurrence[{2,-1}, {1,22}, 50] (* G. C. Greubel, Apr 19 2018 *)
-
PARI
for(n=0, 50, print1(21*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
Formula
From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+20*x)/(1-x)^2.
E.g.f.: (21*x + 1)*exp(x). (End)