cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244911 Table read by antidiagonals: T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 7, 1, 1, 5, 10, 13, 11, 1, 1, 6, 13, 19, 21, 16, 1, 1, 7, 16, 25, 31, 31, 22, 1, 1, 8, 19, 31, 41, 46, 43, 29, 1, 1, 9, 22, 37, 51, 61, 64, 57, 37, 1, 1, 10, 25, 43, 61, 76, 85, 85, 73, 46, 1, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 07 2014

Keywords

Comments

T(n,k) is the total number of boxes, when we start with 1 center box (n = 0) then expand 1 box on k-arms for each n iteration. See illustration in links.
It seems that column C(k) = centered k-gonal numbers, and row R(n) = A000217(n)*k + 1.
The triangle under the main diagonal is A121722.
Column N (CN) is the Narayana transform (A001263) of (1, N, 0, 0, 0, ...). Example: C2 (1, 3, 7, 13, ...) is the Narayana transform of (1, 2, 0, 0, 0, ...). - Gary W. Adamson, Oct 01 2015

Examples

			Table begins:
       C0  C1  C2  C3  C4  C5
  n/k  0   1   2   3   4   5   ...
R0 0   1   1   1   1   1   1   ...
R1 1   1   2   3   4   5   6   ...
R2 2   1   4   7   10  13  16  ...
R3 3   1   7   13  19  25  31  ...
R4 4   1   11  21  31  41  51  ...
R5 5   1   16  31  46  61  76  ...
R6 6   1   22  43  64  85  106 ...
R7 7   1   29  57  85  113 141 ...
R8 8   1   37  73  109 145 181 ...
R9 9   1   46  91  136 181 226 ...
  ...  ... ... ... ... ... ... ...
C1 = A000124, C2 = A002061, C3 = A005448, C4 = A001844, C5 = A005891, C6 = A003215, C7 = A069099, C8 = A016754, C9 = A060544, C10 = A062786, C11 = A069125, C12  =  A003154.
R1 = A000027, R2 = A016777, R3 = A016921, R4 = A017281, R5 = 15*k + 1, R6 = A215146, R7 = A161714.
		

Crossrefs

Formula

T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

A320467 Two-column table read by rows: The Mayan 260-day Tzolkin cycle, with day names replaced by numbers.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 1, 14, 2, 15, 3, 16, 4, 17, 5, 18, 6, 19, 7, 20, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, 12, 7, 13, 8, 14, 9, 15, 10, 16, 11, 17, 12, 18
Offset: 1

Views

Author

Lucian Craciun, Oct 13 2018

Keywords

Comments

Day 1 of year 1 of the Mayan Long Count calendar (0.0.1.0.1) coincides with the first day of the Tzolkin cycle (1,1). Two Tzolkin cycles before that date, there was a new moon.

Examples

			The first pair, (1,1), represents 1 Imix; the second pair, (2,2), represents 2 Ik; the thirteenth pair, (13,13), represents 13 Ben; the fourteenth pair, (1,14), represents 1 Ix; the fifteenth pair, (2,15), represents 2 Men; etc.
		

Crossrefs

Programs

  • Mathematica
    For[{A := {}, k := 0}, k < 260, k++, A = Append[A, {1 + Mod[k, 13], 1 + Mod[k, 20]}]]; Flatten[A]
    a[n_]:=(Mod[(n-1)/2, 13] + 1)*Mod[n, 2]+(Mod[n/2-1, 20] + 1)*(1-Mod[n, 2]); Array[a, 260] (* Stefano Spezia, Dec 07 2018 *)

Formula

a(2n-1) = ((n - 1) mod 13) + 1.
a(2n) = ((n - 1) mod 20) + 1.
a(n) = ((n - 1)/2 mod 13 + 1)*(n mod 2) + ((n/2 - 1) mod 20 + 1)*(1 - (n mod 2)). - Stefano Spezia, Dec 07 2018
Showing 1-2 of 2 results.